

Anomalous 5/2 Quantum Hall Phase Due to Landau-Level Mixing

Sudipto Das^{*}, Sahana Das, and Sudhansu S. Mandal

Indian Institute of Technology Kharagpur, India

*Email: sudiptodas.cgr@gmail.com

INTRODUCTION

Current carrying 2D electron gas subjected to high magnetic field at vey low temperature

- \Rightarrow Discretize Fermi sea \Rightarrow Landau levels
- \Rightarrow Quantum Hall effect
- Filling factor, $v = N/N_{\phi} \Rightarrow$ Integer, Fraction

• $v = 5/2 \Rightarrow 1/2$ -filled second Landau level \Rightarrow Enigmatic state

• $v = 5/2 \Rightarrow$ Hosts non-Abelian quasi-particle \Rightarrow qubit of fault tollerent *Topological* quantum

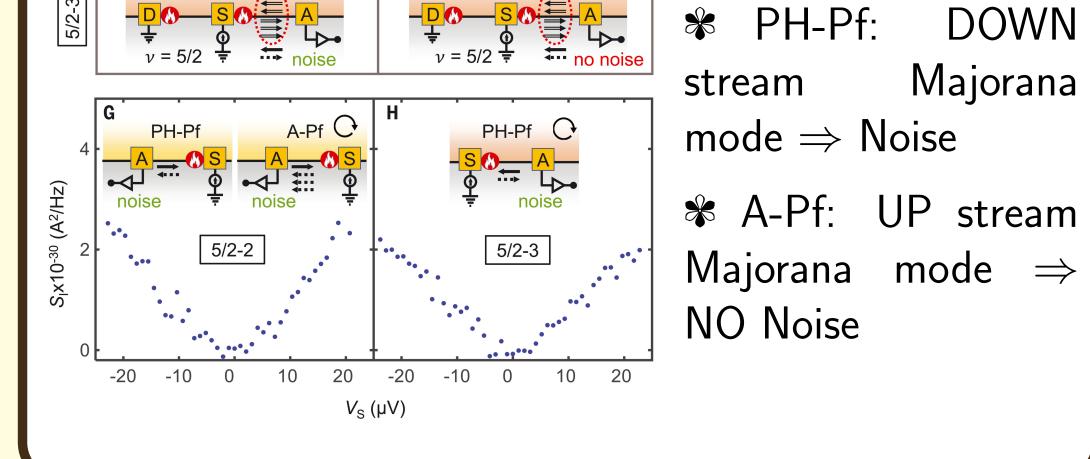
Phases	Flux, N_{ϕ}	Model wave function	K
Pfaffian (Pf)	2N - 3	Moore-Read Pfaffian ^[2]	7/2
Anti-Pfaffian (A-Pf)	2N + 1	Moore-Read Conjugate	5/2
Particle-hole symmetric Pfaffian (PH-Pf)	2 <i>N</i> – 1	?	3/2

The Debate

Theoretical studies favour \implies A-Pf

• Topologically distinct possible candidates for 5/2,

Experimental observations $favour^{[3,4]} \Longrightarrow PH-Pf$



CTQM2022

• 5/2 state observed at $\Rightarrow B \sim 12 - 1 \text{ T}$ For GaAs sample LLM strength, $\kappa \sim 0.7-2.5$ ($\kappa = 2.52/\sqrt{B}$) • Theoretical predictions were limited to $\kappa \lesssim 1$ * The "realistic regime", $\kappa \gtrsim 1$ remained UNEXPLORED !! Effective Hamiltonian^[5] $\hat{H}_{\text{eff}}(\kappa) = \sum_{m} \left[V_m^{(2)} |_{Coulomb} + \kappa \,\delta \,V_m^{(2)} \right] + \sum_{m} \kappa \,V_m^{(3)}$ where $V_m^{(2)}$ and $V_m^{(3)}$ are two and three body *m*-th pseud-

potentials respectively

EXPERIMENTAL EVIDENCE LANDAU LEVEL MIXING - EMERGENCE OF ANOMALOUS PHASE (*A*-PHASE) Thermal Hall Conductivity Measurement^[3] 1.5 \mathcal{O}_{ij} 0.5 1.5 0 1.5 0 0.5 Normalized thermal PH-Pf A–Pf Pf conductance coefficient ☆ v = 2.50 0.5 $K = (2.53 \pm 0.04) \kappa_0$ for • ν = 2.51 \mathcal{K}_i 2.75 0.4 $T_o = 18 - 25 \,\mathrm{mK}$ 0.2 **\%** T_0 ≤ 15mk ⇒ in-(c) 2.50 crease of equilibration length of counter propa- $-w/\ell_0 = 1$ $w/\ell_0 = 2 + 15$ gating modes $\Rightarrow K$ rises (0) $\kappa = 0.7$ Pf $\kappa = 0.7$ A - Pf $-w/\ell_0 = 3$ **Shot Noise Experiment**^[4] PH- Pf A-Pf •••**•** M $\circ \kappa = 1.1$ $\nu = 0$ Measurement ${\scriptstyle t angle}\,\kappa=1.2$ 0.08 0.10 0.12 0.0 0.5 1.0 1.5 2.0 ******* Down stream noise v = 5/2 $\kappa = 1.2$ 0.06 0.02 0.04 at the interface of v = 5/2 and v = 3, > Fig (a)-(c), exact overlap matrix, $\mathscr{O}_{ij} = \langle \Psi_{ex}(\kappa_i) | \Psi_{ex}(\kappa_j) \rangle$ $\nu = 3$ v = 3 \bigcirc Fig (a)-(i) Entanglement spectra of exact states of Pf, \succ DOWN

for Pf, A-Pf, PH-Pf at N = 14, 12, 14 respectively > Blue crosses \Rightarrow unquantized points; Gray zones \Rightarrow unquantized regime

> Finte charge gap, Δ_c for PH-Pf at thermodynamic limit

 \succ Finte neutral excitation gap, Δ for PH-Pf at high- κ

 $\mathbf{O} \kappa \sim 0.7$ -1.5 \implies Reentrant Anomalous Phase

Experimental Regime

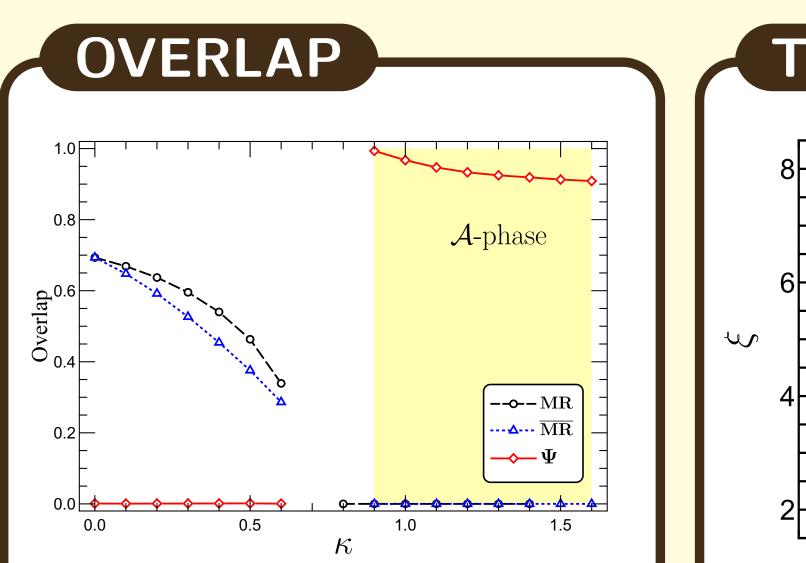
A-Pf, PH-Pf fluxes for different κ sectors

 \succ Well gapped ES in the \mathscr{A} -phase

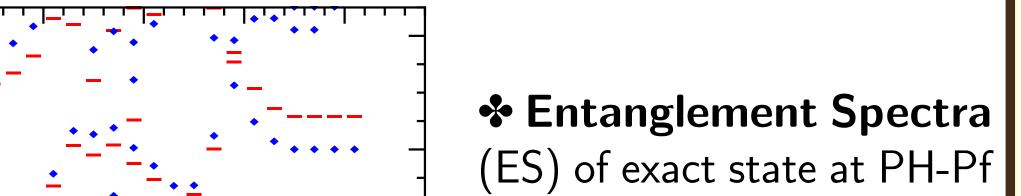
 \succ Close similarities of ES in the \mathscr{A} -phase \Rightarrow Unique topological order irrespective of different flux

PROPOSED WAVE FUNCTION FOR 5/2 STATE IN THE \mathscr{A} -PHASE

• $J_N = \prod_{i < j}^N (z_i - z_j)$ is the N-particle Jastrow factor; z_i electronic coordinates.


flux and Ψ

lying sector


Excellent matching of low

Two Bose-Einstein condensates of non-interacting composite bosons consisting N/2-particles with strong repulsion.

 $\Psi = J_N \mathscr{S} \left[\prod_{1 \leqslant i,j \leqslant N/2} \left(z_i - z_{N/2+j} \right)^2 \right]$ • Total flux = 2N - 1 (PH-Pf)

TOPOLOGICAL PROPERTIES

SUMMARY

 \star Our work finds a possible resolution to the earlier theoretical debate and experimental observation.

 \star We have identified a reentrant anomalous phase, distinct from conventional Pf or A-Pf phase at an intermediate range of LLM.

 \bigstar In the lower κ -phase,

 \diamond The overlaps of MR and MR decays with κ

 \diamond Overlap of Ψ is zero

 \bigstar In the *A*-phase,

 \Rightarrow The overlaps of MR and \overline{MR} is zero \diamond Overlap of Ψ is consistently very high

exact $2 \mid N_A = 5, N_B = 5$

\clubsuit Topological properties of Ψ is encoded in **K-matrix**,

 $\mathbf{K} = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}, \quad \vec{t} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{s} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$

- Filling factor, $v = \vec{t}^T \cdot \mathbf{K}^{-1} \cdot \vec{t} = 1/2$ **Shift** = $(2/\nu) \vec{t}^T \cdot \mathbf{K}^{-1} \cdot \vec{s} = 1$
- **Ground state degeneracy**, $\mathfrak{D} = |\mathsf{Det}(\mathsf{K})^g| = 8^g$
- **\clubsuit** Eigen-values of **K**: one +ve, one -ve \Rightarrow Central charge = 0
- Macroscopic N/2 bosons can sit together \Rightarrow coset group \mathbb{Z}_2 \Rightarrow possibly supports Majorana edge Mode
- Total central charge = 2 + 0 + 1/2 = 5/2

 \star We propose a wave function for this phase having similar flux of PH-Pf which possesses very high overlap and good matching of low-lying ES. \star The unique topological order observed for this A-phase should possibly correspond to the experimentally observed phase.

References

1. S. D. Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett. 94, 166802, (2005)2. G. Moore and N. Read, Nuclear Physics B 360, 362 (1991) 3. M. Banerjee *et. al.*, Nature 559, 205 (2018) 4. 5. B. Dutta *et. al.*, Science 375, 193–197 (2022) 5. M. R. Peterson and C. Nayak, Phys. Rev. B 87, 245129 (2013) 6. S. Das, S. Das, S. S. Mandal, arXiv:2206.04419

Acknowledgments: S.D. thanks the IIT Kharagpur for the travel support and CTQM workshop for the local hospitality.