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Abstract

We investigate the collective charge oscillations in topological surface states such as
Fermi arcs for Weyl or Dirac semimetals. We show that, Weyl semimetal thin-film host
a single ω ∝ √q plasmon mode, that results from collective, anti-symmetric charge
oscillations between the two surfaces, in stark contrast to conventional 2D bilayers
as well as Dirac semimetals with Fermi arcs, which support antisymmetric acoustic
modes along with a symmetric optical mode.

Model

The minimal model of a WSM has two Weyl nodes at the Fermi energy. The low-
energy Hamiltonian can be written using a two-band model. In general, the model
Hamiltonian for n pairs of Weyl nodes consists of n blocks of two band systems. The
basic Hamiltonian block for the semimetal may be written as,

Hη = (σyqx − σxqz) + σzMη(ky), (1)

The mass is given by Mη(ky) = η (m − cos(ky)). The two Weyl nodes are at k =

(0,±k0, 0) with k0 = cos−1(m).

Slab Geometry
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Fig. 1: Schematic picture of a Weyl Semimetal (a) and a Dirac semimetal (b) slab. For Weyl semimetal, the Fermi arcs

are shown in blue colour. The Fermi arcs disperse in opposite directions on top and bottom surfaces. For Dirac

semimetal, there are double Fermi arcs on each surface.

Low-energy band structure of WSM slab

Fig. 2: Low-energy bands of the WSM slab. The n = ±1 bands contain all the FAs as well as bulk states. A Fermi

surface at low energy is marked with states at the dotted side and is supported by one surface and the states at the

dashed-dotted side is supported by the other surface, whereas the states at the solid sides have support dominantly

in the bulk

Heuristic explanation

The system broadly falls in the category of two-layer 2D electronic system, separated
by dielectric medium.

Fig. 3: The self-consistent equations for the interacting response functions χ̃ab (filled), where a, b, λ = ±1 are layer indices,

written at RPA approximation with single curly lines being the interaction Vaλ and the unfilled loop being the non-interacting

response function χabδab.

The interacting response function can be written as,(
1− V11χ1 −V12χ1
−V21χ2 1− V22χ2

)(
χ̃11
χ̃21

)
=

(
χ1
0

)
, (2)

The conditions for self-sustaining collective modes are found from :

1− V (q)
(
χ1(q, ω) + χ2(q, ω)

)
+ V (q)2(1− e−2qL)χ1(q, ω)χ2(q, ω) = 0. (3)

V11 = V22 = αc/q and V12 = V21 = αce
−qL/q are the bare intra- and inter-layer

Coulomb interactions, where L is the separation between the layers and αc =
2πe2/ε.χ1(q, ω) and χ2(q, ω) are the non interacting response function for the top and
bottom surfaces.
In general there are two resulting mode [2, 3]. A ω ∝ q (short range) plasmon, re-
sulting from out-of-phase oscillation of the layers. A ω ∝ √q(long range) plasmon,
resulting from in-phase oscillation of the layers.

Result

Plasmon

Plasmons: poles of density-density correlation in presence of coulomb interaction.

χ(r, r′, t) = −iθ(t)〈[ρ(r, t), ρ(r′)]〉 (4)

In matrix form,

χ(q, ω) = (1−B)−1χ0(q, ω) (5)

The poles of the response function can then be found by solving det[I− B(q, ω)] = 0.
We found a single ω ∝ √q plasmon mode for WSM whereas in DSM there are two plasmon mode ω ∝ √q as well as ω ∝ q.

Fig. 4: Density plot of the loss function, defined as −Imε−1(q, ω) = V(q)Im[χ0]
(1−V(q)Re[χ0])2+(V(q)Im[χ0])2

. Particle-hole continuum (lighter area) and the sharp plasmonic modes (marked) as a function

of q along the direction of tan−1(qy/qx) = 600. The left and the right plots are for the WSM and DSM thin films, respectively.

charge oscilattion

We construct the charge fluctuations associated with the collective modes using the eigenvectors of the density response matrix
χ(q, ω).
The charge fluctuations which are antisymmetric across surfaces appear in a

√
q mode for the WSM, whereas in the DSM – as in

conventional semiconductor bilayers – this behavior is found in an acoustic mode.
The low-q plasmons are undamped, highly non-local and supported by both the surfaces.

Fig. 5: At the condition of the plasmonic mode, one of the eigenvalues of the matrix vanishes. We plot the corresponding (normalized) eigenvector ψ(z), showing the ω ∝ √q mode in the

Weyl (right most) is indeed an antisymmetric mode, which is contrary to the DSM.

Heuristic explanation

In the cases of WSM’s and DSM’s these surface states may be modeled as a collection of helical states dispersing linearly in the
x̂-direction,
Dirac Fermi arcs: E(±)

s (k) = (±)s~vFkx, k0 < ky < k0, s = 1 for top surface and s = −1 for bottom surface.

The noninteracting polarizability function is, χDSMT (q, ω) = χDSMB (q, ω) = 2βq2x
ω2−q2x

, where β = kFk0
2π2~vF

Solving Eq.(3) one find,

ω
(1)
D = vF

√
1 + 2αcβL cos θ q, ω

(2)
D = vF

√
4αcβ cos θ

√
q. (6)

Weyl Fermi arcs: ET/B(k) = (±)~vFkx, k0 < ky < k0. For WSM the non-interacting polarizability is given by, χWSM
T (q, ω) = βqx

ω−qx
and χWSM

B (q, ω) = − βqx
ω+qx

. In the limit qL << 1, one find,

ωW = vF
√

2αcβ
√

1 + αcβL cos θ
√
q. (7)

The net charge fluctuations on the two surfaces δρi(q, ω) (i = 1, 2) are written as, δρ1δρ2
= χ1V12

1−V11χ1. For small q and for the ω ∝ √q

mode, χ1 ∝
√
q whereas V11, V12 ∝ 1/q. This implies δρ1

δρ2

∣∣∣
WSM

≈ −V12V11
≈ −1, i.e. anti symmetric charge oscillation.

In the case of DSM, for the ω ∝ √q mode, δρ1
δρ2

∣∣∣
Dirac

≈ 1, this implies a symmetric charge oscillation.
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