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Introduction 



Indistinguishable particles
All elementary particles are either fermions or 
bosons. When identical particles are 
exchanged                                               with 
positive sign for bosons and negative sign for 
fermions


But for emergent particles or quasiparticles in 
condensed matter systems ,  this is not 
necessary        

ψ(r1, r2) = ± ψ(r2, r1)



When we think of  electrons flowing  
in a wire

In terms of probability densities, injecting 
electron  implies increasing probability density 
at one end and having that increase propagate



MIRACLE - can think of the moving object as 
a particle - a new kind of `electron’ - a 
quasiparticle or collective excitation which is 
made up of all the electrons.


Still called `electron’ because it behaves like a 
particle - it has a mass        (different from 
original electron mass), but same spin and the 
same electric charge - behave as a single 
particle - Landau Fermi liquid theory

m*



Quasiparticles 

So anyons, parafermions,  can emerge as 
quasiparticles in condensed  matter systems


Emergent excitations - from a soup of 
particles       



Abelian Anyons 

Unlike bosons and fermions, emergent particles 
can  have complex phases under exchange  


Anyons obey braid group statistics - different 
from permutation group because how one 
exchanges particles also important 

Leinaas, Myrrheim, Wilczek

ψ(r1, r2) = e±iθψ(r2, r1)

1977



Braid group statistics
Easiest to see pictorially as  world lines in a space-time 
diagram
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FIG. 7: The three generators of the braid group B4
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FIG. 8: The identity and the inverse of the generator �1.

circle around each other and form closed paths by coming back to their original positions (upto permutations of the
positions). The adiabatic exchange of particles classifies particles under the braid group. As we saw earlier, even
under adiabatic exchange, in three spatial dimension, we only have fermions or bosons, whereas in two dimensions,
there are many other possibilities. Formally, the braid group BN is the group of inequivalent paths that occur when
adiabatically transporting N particles. Since they represent a configuration of N particles, at some particular time
(say t = 0) evolving to a configuration of N particles at some later time t = T , the world lines cannot cross each other
or form knots around each other or loop back. At each time, we want to have only N particles. Each history or set of
trajectories of the N particles becomes a braid. For example, in Fig.6, we show an example of some elements of the
braid group B4, which is the braid group of 4 particles. Exchanges of neighbouring particles (by some counting rule,
since the particles are in two dimensional space) form the generators of the group. For instance, the generators of the
group B4 are given in Fig.7 and are denoted as �j , j = 1, 2, 3. �j describes exchange of jth particle with (j + 1)th

particle in a counter-clockwise direction (by definition), so that the clockwise exchange is denoted by (�j)�1. The
identity element is given by �0 where there is no exchange, and group inverse by the clockwise exchange (�j)�1 as
shown in Fig.8. Group multiplication is defined as following one trajectory by another in time as shown in Fig.9.
Note that we have put crosses on the time-lines which are identified in the figure. It is now easy to check that
(�j)(�j)�1 = �0 as shown in Fig.10 (without the crosses). It is also easy to seen that (�1)n 6= �0 for any n, which is
the reason that ‘any’ statistics are allowed in two dimensions. (See Fig.11).

We will end this subsection by mentioning the two defining relations satisfied by the generators of the braid group.

�i�j = �j�i, |i � j| � 2

�j�j+1�j = �j+1�j�j+1 (9)

The second one is called the Yang-Baxter relation. Both these relations can be easily checked pictorially ( as we show
in Fig.12 for the generators of B4).

It should be clear by now that the braid group leads to a much finer classification than the permutation group.
For instance, the two elements shown in Fig.13 are di↵erent elements of the braid group, but the same element of
the permutation group. So the quantum theory of anyons has the quantum states of the anyons transforming as
unitary representations of the braid group. Abelian anyons form one-dimensional representations of the braid group.
There are an infinite number of such representations, because under exchange, the phase that is picked up is ei✓ and
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Here, it is pictorially clear (see Fig.(7)),

=
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that the square, or indeed, any power of the trajectory representing the adiabatic exchange

of two particles is not 1. Hence, particles that transform as representations of the braid

group are allowed to pick up ‘any’ phase under adiabatic exchange. For completeness, we

mention that more abstractly, the braid group BN is defined as the group whose elements

(trajectories) satisfy the following two relations depicted pictorially in Fig.(8)

Fig. 8

=

and Fig.(9).
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FIG. 13: Di↵erent elements of the braid group, but same element of the permutation group.

Similarly by insisting that S�|s, m > have a positive norm, we get s(s + 1) � m(m � 1) � 0, which implies that
m � �s for all m. Once again, to avoid m < �s, we need to set

m � (�s) = integer (13)

Adding the equations in Eqs.12 and 13, we get

2s = integer =) s = integer/2 . (14)

Thus, just from the commutation relations, we can prove that the particles in three dimensions have either integer or
half-integer spin.

However, in two dimensions, there exists only one axis of rotation, perpendicular to the plane of the two dimensions.
Hence, here spin only refers to S3 which has no commutation relations to satisfy, and hence it can be anything!

D. Physical model of an anyon

Now let us construct a simple physical model of an anyon8. Imagine a spinless particle of charge q orbiting around
a thin solenoid along the z-axis at a distance r as shown in Fig14. When there is no current through the solenoid,
the orbital angular momentum of the charged particle is quantitized as an integer - lz = integer. When a current is
turned on, the particle feels an electric field that can easily be computed using

Z
(r ⇥ E)d2r =

Z
Bd2r = �@�

@t
(15)

where � is the total flux through the solenoid. This is just the Aharanov-Bohm e↵ect. Hence,

Z
E · dl = 2⇡|r|E✓ = ��̇ leading to E = � �̇

2⇡|r| (ẑ ⇥ r) . (16)



8

Here, it is pictorially clear (see Fig.(7)),

=

Fig. 7

that the square, or indeed, any power of the trajectory representing the adiabatic exchange

of two particles is not 1. Hence, particles that transform as representations of the braid

group are allowed to pick up ‘any’ phase under adiabatic exchange. For completeness, we

mention that more abstractly, the braid group BN is defined as the group whose elements

(trajectories) satisfy the following two relations depicted pictorially in Fig.(8)

Fig. 8

=

and Fig.(9).

12

=

FIG. 12: Yang-Baxter relations.

1 2

11

1

22

2
FIG. 13: Di↵erent elements of the braid group, but same element of the permutation group.

Similarly by insisting that S�|s, m > have a positive norm, we get s(s + 1) � m(m � 1) � 0, which implies that
m � �s for all m. Once again, to avoid m < �s, we need to set

m � (�s) = integer (13)

Adding the equations in Eqs.12 and 13, we get

2s = integer =) s = integer/2 . (14)

Thus, just from the commutation relations, we can prove that the particles in three dimensions have either integer or
half-integer spin.

However, in two dimensions, there exists only one axis of rotation, perpendicular to the plane of the two dimensions.
Hence, here spin only refers to S3 which has no commutation relations to satisfy, and hence it can be anything!

D. Physical model of an anyon

Now let us construct a simple physical model of an anyon8. Imagine a spinless particle of charge q orbiting around
a thin solenoid along the z-axis at a distance r as shown in Fig14. When there is no current through the solenoid,
the orbital angular momentum of the charged particle is quantitized as an integer - lz = integer. When a current is
turned on, the particle feels an electric field that can easily be computed using

Z
(r ⇥ E)d2r =

Z
Bd2r = �@�

@t
(15)

where � is the total flux through the solenoid. This is just the Aharanov-Bohm e↵ect. Hence,

Z
E · dl = 2⇡|r|E✓ = ��̇ leading to E = � �̇
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Main point is that quantum statistics obeyed 
by anyons is very different from bosons or 
fermions


Cannot just deal with symmetrized or anti-
symmetrized wave functions for many particles


Entire history is important - reason for why 
even a system of free anyons is very hard to 
solve



Non-abelian anyons

Anyons which acquire just a phase under 
exchange are abelian anyons


Quasiparticles can also transform as non-
abelian representations of the braid group


 ψa → Uabψb Frohlich, 1988



Typically happens when there are 
degeneracies in the ground state - multiple 
states have same configuration of identical 
particles 


Prepare system in one ground state - 
exchange two quasi-particles - transformed 
by unitary transformation to another state in 
the ground state manifold


Why  are such quasi-particles important?



Relevance to quantum computing 

States are the qubits and the unitary 
transformations are the quantum gates that 
act on the qubits


Intrinsically decoherence free because 
information is encoded non-locally 



Majorana modes

anyons /Ising anyonsZ2



What are Majoranas?



Majorana modes or self-conjugate modes can 
exist as quasi-particles in condensed matter 
systems


These are not fermions, but instead behave as 
non-abelian anyons


Expect to be able to use them to make qubits 
for quantum computation



Kitaev model 2001

Essential idea is to think of the fermions 
on a site as being made up of 2  `Majorana 
modes’ and changing parameters in the 
Hamiltonian so that these two modes get 
separated. 
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�A,1 �B,1 �A,2 �B,2 �A,3 �B,3 �A,4 �B,4

�A,1 �B,1 �A,2 �B,2 �A,3 �B,3 �A,4 �B,4

FIG. 27: Here, the bonds are between Majorana modes at the same site. The ground state is unique and the end Majorana
modes do not play any special role.

�A,1 �B,1 �A,2 �B,2 �A,3 �B,3 �A,4 �B,4

�A,1 �B,1 �A,2 �B,2 �A,3 �B,3 �A,4 �B,4

FIG. 28: Here, the bonds are between Majorana modes on adjacent sites. There are unpaired Majorana modes at the two ends.
The ground state is doubly degenerate depending on whether the fermion state formed from the unpaired Majorana modes is
occupied or unoccupied.

Pairs of Majorana fermions (�A and �B) can be combined to form genuine fermions which can form a single 2 level
system, depending on whether the fermion state is occupied or unoccupied. The next step is to consider what happens
when we have 2N Majorana fermions. We can pair them up to make N ordinary fermions -

qx =
1

2
(�A,x + i�B,x), q†

x =
1

2
(�A,x � i�B,x) (73)

(the same equations used to split the fermions into Majorana modes given in Eq.70) with the number operators at
each site x given as Nx = q†

xqx = 0, 1. This gives a 2N dimensional Fock space.
Why is it interesting to rewrite fermions in terms of pairs of Majorana fermions? Naively, this seems to be something

which can always be done, and does not lead to anything new. But if a pair of Majoranas can be spatially separated,
then the fermion made from them is delocalised. It is hence, protected from local changes that a↵ect only one of
them and hence protected from decoherence. This is why Majorana modes are expected to be relevant in quantum
computation.

Now, let us get back to the Kitaev model. To understand the physics in a simple way, let us consider two simple
limits, where the Hamiltonian becomes particularly simple. First, consider the case when µ = 0 and t = �. Here, we
get

H = �it
N�1X

x=1

�B,x�A,x+1 . (74)

In the other limit, we take µ < 0 and t = � = 0 and get

H = �µ

2

NX

x=1

(1 + i�B,x�A,x) . (75)

What do these two limits mean?
We first analyse the second case. Here, the fermion at each site is simply broken up into two Majorana fermions

and the µ term simply couples them as shown in Fig.27. In this case, there is a unique ground state corresponding to
the vacuum state with no fermions. Adding a fermion to the system costs an energy µ, so the system is gapped.

The first limit, on the other hand, couples Majorana modes at adjacent sites. In terms of new fermions dx =
(�B,x + i�A,x+1)/2, the Hamiltonian can be rewritten as

H = 2t
N�1X

x=1

d†
xdx (76)
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Spinless fermions with   = chemical potential, 
t = hopping  and  = pairing potential 


Can rewrite in terms of Majorana modes 

μ
Δ

γa, γb

H = �µ

NX

x=1

c
†
xcx � 1

2

NX

x=1

(tc†xcx+1 +�cxcx+1 + h.c.)
<latexit sha1_base64="v0x2JxeV7/HAxC4RH1DgPpSUHUk="></latexit><latexit sha1_base64="v0x2JxeV7/HAxC4RH1DgPpSUHUk="></latexit><latexit sha1_base64="v0x2JxeV7/HAxC4RH1DgPpSUHUk="></latexit><latexit sha1_base64="v0x2JxeV7/HAxC4RH1DgPpSUHUk="></latexit>

{γa, γb} = δab, γ2
a = 1, γ2

b = 1

cx =
1

2
(�x,A + i�x,B), c†x =

1

2
(�x,A � i�x,B)
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γ† = γ

γx,A = (cx + c†
x ) γx,B = − i(cx − c†

x )



When    and   , only bonds between 
Majoranas at same site


When  , unpaired Majoranas at the two 
ends 


μ < 0 t = Δ = 0

μ = 0, t = Δ
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H =
−μ
2

N

∑
x=1

(1 + iγx,Bγx,A)

H = −
it
2

N−1

∑
x=1

γx,Bγx+1,A



Essential point, Hamiltonian  has no 
dependence on end Majoranas and is 
independent of whether or not the non-local 
fermion formed from them  is occupied or not 
occupied - ground state is not unique, it is 
doubly degenerate


Range of parameters for the topological 
phase, not just the points where we have 
solved it



Kitaev’s trick was to fractionalize the fermion and 
put different pieces of them at the two ends of the 
chain so that they behave as independent quasi-
particles - Majorana modes


No energy is required to occupy this non-local 
fermion state made of the Majorana modes - so 
occupied and unoccupied states are degenerate


Occupation of state cannot be changed by local 
fluctuations  at one end of chain - so decoherence 
free



Relevance to quantum computing 

Kitaev’s proposal - degenerate ground state ( non-
local fermion state filled or unfilled) acts as topological 
memory - cannot be easily disturbed by local errors


Exchanging  Majoranas implemented by unitary 
rotations or gates

(γi
γj) = U (γj

γi)



Only braiding properties of Majoranas 
important and not local nature of paths


Hence topologically protected from 
decoherence and noise - TOPOLOGICAL 
quantum computation



How to find Majoranas
Majorana does not conserve particle number  -  
so a combination of  electron and hole


Need superconductivity,  but usual 
superconductors have electron and hole states 
with opposite spin


Need to get rid of one spin species - need 
effectively spinless or p-wave  superconductivity



Engineering Majoranas 

Fu and Kane (quantum spin Hall insulator  edges) - essential 
point is that spin is coupled to the momentum. So effectively 
spinless fermions 


To localise the end Majoranas, need another gap provided by 
ferromagnet insulator

Fu, Kane, 2008

'( )*

+,-.//0.1
2



Semiconductor wires

Semiconductor wires with spin orbit coupling 
and   and coupled to s-wave superconductorB

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled 
wire (e.g. InAs)

Realization in 1D wires

s-wave SC

Generates a1D ‘spinless’  SC state 
with Majorana fermions!

B ↓

H = ∫ dxψ†[−
∂2

x

2m
− μ − uiℏ∂xσy −

gμbB
2

σz]ψ + Δ[ψ↑ψ↓ + h . c.]



Engineered to mimic the Kitaev model, so 
expect to have a Majorana bound state at the 
edge of the topological superconductor

Lutchyn,Sau and Das Sarma, 2010
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Fig. 4.1 Normal-state dispersions of the quantum wire in (a) the Kitaev limit, (b) the

topological insulator limit without Zeeman field, and (c) the topological insulator limit with

Zeeman field.

band bottom of the spin-down band. Then, there is only a single left-moving and
a single right-moving channel (or none at all) and we will see below that this limit
maps to the spinless p-wave superconductor discussed above.

• Topological-insulator limit B ⌧ ✏so: First neglecting the Zeeman field, the normal-
state dispersion

✏p =
p
2

2m
± up =

1

2m
(p±mu)2 �

1

2
mu

2 (4.3)

consists of two parabolas shifted relative to each other along the momentum axis
due to the Rashba spin-orbit coupling. The two parabolas correspond to spin-up
and spin-down electrons with respect to the direction of the spin-orbit field (i.e.,
the x-direction for the Hamiltonian in Eq. (4.1)), and cross at p = 0. The Zeeman
field applied in a direction perpendicular to the spin-orbit field (the z-direction
for the Hamiltonian in Eq. (4.1)) mixes the two states at p = 0 and this opens a
gap of size 2B in the spectrum, which now becomes1

✏p =
p
2

2m
±

p
(up)2 +B2. (4.4)

When we adjust the Fermi energy to lie within this gap, we again have a situation
in which there are only a single right-moving mode and a single left-moving mode
at the Fermi energy. We will see that this limit is closely related to the topological-
insulator model discussed in the previous section.

4.1 Kitaev limit

First consider the limit of strong Zeeman field with the Fermi energy lying far below
the bottom of the spin-down parabola. In that case, we can project out the high-
energy states associated with the spin-down parabola and derive an e↵ective low-
energy Hamiltonian. To do so, first neglect the spin-orbit coupling and measure the

1Note that the “e↵ective Zeeman field” acting on the electron spin now has orthogonal components
up from spin-orbit and B from Zeeman, i.e., the overall strength of the e↵ective Zeeman field isp

(up)2 +B2.



Many experiments have tried to look for 
signals of the MBS

Quest for Majoranas
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Zero-bias peaks and splitting in an Al–InAs
nanowire topological superconductor as a
signature of Majorana fermions
Anindya Das†, Yuval Ronen†, Yonatan Most, Yuval Oreg, Moty Heiblum* and Hadas Shtrikman

Majorana fermions are the only fermionic particles that are expected to be their own antiparticles. Although elementary
particles of theMajorana type have not been identified yet, quasi-particleswithMajorana-like properties, born from interacting
electrons in the solid, have been predicted to exist. Here, we present thorough experimental studies, backed by numerical
simulations, of a system composed of an aluminium superconductor in proximity to an indium arsenide nanowire, with the
latter possessing strong spin–orbit coupling and Zeeman splitting. An induced one-dimensional topological superconductor,
supporting Majorana fermions at both ends, is expected to form. We concentrate on the characteristics of a distinct zero-bias
conductance peak and its splitting in energy—both appearing only with a small magnetic field applied along the wire. The
zero-bias conductance peakwas found to be robustly tied to the Fermi energy over awide range of systemparameters. Although
not providing definite proof of a Majorana state, the presented data and the simulations support its existence.

Quantum mechanics and special relativity were merged into
a single theory when Dirac presented his equation in
19291, with a solution predicting an electron and an anti-

electron partner—the positron. Majorana, however, showed that
Dirac’s equation also has real solutions—the so-called Majorana
fermions2, which are their own anti-particles3. In condensed-
matter physics, the Majorana fermion is an emergent quasi-particle
zero-energy state4,5. The fundamental aspects of Majoranas and
their non-Abelian braiding properties6,7 offer possible applications
in quantum computation8–10. Examples of leading candidates to
host Majoranas are: Moore–Read-type states in the fractional
quantum Hall effect11; vortices in two-dimensional (2D) p+ ip
spinless superconductors12; and domain walls in 1D p-wave
superconductors4,13. As conventional s-wave superconductors are
more easily implemented than p-wave ones, several suggestions
for their implementations have recently been proposed: the
surface of a 3D topological insulator in proximity to an s-wave
superconductor14; a 2D semiconductor with strong spin–orbit
coupling in proximity to an s-wave superconductor under broken
time reversal symmetry (using a local ferromagnet15,16 or an external
magnetic field17); and a 1D semiconductor with the Majorana
quasi-particles appearing at the two ends of the 1D wire4,5,18,19.
Specifically, the authors of refs 18,19 proposed to employ InAs or
InSb nanowires, possessing strong spin–orbit coupling and large
Zeeman splitting at low magnetic fields, in proximity to an s-wave
superconductor. Following the suggestion of ref. 19 to use an
InSb nanowire, recent reports20,21 demonstrated the observation
of a magnetic-field-induced zero-bias conductance peak (ZBP), as
expected for a zero-energyMajorana state.

Here, we report the observation of a ZBP and its splitting
under different conditions of magnetic field, chemical potential
and temperature, in a high-quality suspended InAs nanowire in
proximity to an Al superconductor. We compare the experimental
results with numerical simulations based on scattering theory and

Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel. †These authors
contributed equally to this work. *e-mail: moty.heiblum@weizmann.ac.il.

find, using the experimental parameters, a qualitative agreement of
the data with a Majorana state. We also discuss alternative models
thatmay account for the observed ZBP (refs 22–24).

Theoretical aspects ofMajorana states
As our main goal is to find evidence of the formation of Majorana
states, it is important to specify the required conditions for their
formation. The most basic requirement is that the quasi-particle
is spinless. These requirements can be satisfied by p-wave Cooper
pairing of spinless particles5, or in v + (1/2) filling factor (where
v is an integer) in the fractional quantum Hall effect11. Here
we present a realization of a 1D nanowire coupled to an s-wave
superconductor, thus, with an induced superconductivity. Rashba
spin–orbit coupling25, leading to an effective magnetic field Bso ∝
p×E (where p is the momentum along the wire and E is the electric
field perpendicular to the wire), separates electrons with opposite
spins inmomentum space. Applying amagnetic field perpendicular
to Bso will mix the two spin bands, forming two pseudo-spin
bands, Zeeman gapped by 2EZ at p = 0 (Fig. 1a,b). Inducing
superconductivity modifies the Zeeman gap at p= 0 and opens up
a gap at the Fermi momentum pF (Fig. 1c). The overall gap Eg is
the smaller of these two gaps. Three parameters are of significance:
the spin–orbit energy ∆so = p2so/2m, with ±pso =±h̄/λso (Fig. 1a);
the Zeeman gap 2EZ = gµBB, where g is the Landé g -factor, µB
is the Bohr magnetron and B is the external magnetic field; and
the induced superconducting gap in the nanowire 2∆ind (the Al
superconducting gap is 2∆Al). For ∆ind > 0 and EZ = 0 the wire
is a trivial superconductor with a gapped spectrum. When EZ is
increased to EZ =

√
∆2

ind+µ2, where µ is the chemical potential
(Fig. 1a), the gap at p= 0 closes at the Fermi energy, and the wire
enters the topological phase; with a topological gap reopeningwith a
further increase in EZ. Continuously changing the parameters along
the wire from its topological phase into another gapped phase must
close the gap at the phase transition point, forming a Majorana

NATURE PHYSICS | VOL 8 | DECEMBER 2012 | www.nature.com/naturephysics 887

rather than by microtubule reorganization. Thus,
polarization of the DVaxis is independent of the
formation of the microtubule array that defines
the AP axis, as previously proposed.
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Signatures of Majorana Fermions in
Hybrid Superconductor-Semiconductor
Nanowire Devices
V. Mourik,1* K. Zuo,1* S. M. Frolov,1 S. R. Plissard,2 E. P. A. M. Bakkers,1,2 L. P. Kouwenhoven1†

Majorana fermions are particles identical to their own antiparticles. They have been theoretically
predicted to exist in topological superconductors. Here, we report electrical measurements on
indium antimonide nanowires contacted with one normal (gold) and one superconducting
(niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel
barrier between normal and superconducting contacts. In the presence of magnetic fields on the
order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states
remain fixed to zero bias, even when magnetic fields and gate voltages are changed over
considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires
coupled to superconductors.

All elementary particles have an anti-
particle of opposite charge (for example,
an electron and a positron); the meet-

ing of a particle with its antiparticle results in
the annihilation of both. A special class of par-
ticles, called Majorana fermions, are predicted
to exist that are identical to their own anti-
particle (1). They may appear naturally as ele-

mentary particles or emerge as charge-neutral
and zero-energy quasi-particles in a supercon-
ductor (2, 3). Particularly interesting for the
realization of qubits in quantum computing are
pairs of localized Majoranas separated from each
other by a superconducting region in a topolog-
ical phase (4–11).

On the basis of earlier and later semiconductor-
based proposals (6, 7), Lutchyn et al. (8) and
Oreg et al. (9) have outlined the necessary in-
gredients for engineering a nanowire device that
should accommodate pairs of Majoranas. The
starting point is a one-dimensional (1D) nano-
wire made of semiconducting material with
strong spin-orbit interaction (Fig. 1A). In the
presence of a magnetic field B along the axis

of the nanowire (i.e., a Zeeman field), a gap is
opened at the crossing between the two spin-
orbit bands. If the Fermi energy m is inside this
gap, the degeneracy is twofold, whereas outside
the gap it is fourfold. The next ingredient is to
connect the semiconducting nanowire to an
ordinary s-wave superconductor (Fig. 1A). The
proximity of the superconductor induces pairing
in the nanowire between electron states of oppo-
site momentum and opposite spins and induces
a gap, D. Combining this twofold degeneracy
with an induced gap creates a topological super-
conductor (4–11). The condition for a topolog-
ical phase is EZ > (D2 + m2)1/2, with the Zeeman
energy EZ = gmBB/2 (g is the Landé g factor, mB
is the Bohr magneton). Near the ends of the
wire, the electron density is reduced to zero, and
subsequently, m will drop below the subband
energies such that m2 becomes large. At the points
in space where EZ = (D2 + m2)1/2, Majoranas arise
as zero-energy (i.e., midgap) bound states—one
at each end of the wire (4, 8–11).

Despite their zero charge and energy, Ma-
joranas can be detected in electrical measure-
ments. Tunneling spectroscopy from a normal
conductor into the end of the wire should re-
veal a state at zero energy (12–14). Here, we
report the observation of such zero-energy peaks
and show that they rigidly stick to zero energy
while changing B and gate voltages over large
ranges. Furthermore, we show that this zero-
bias peak (ZBP) is absent if we take out any
of the necessary ingredients of the Majorana
proposals; that is, the rigid ZBP disappears for
zero magnetic field, for a magnetic field par-
allel to the spin-orbit field, or when we take
out the superconductivity.

1Kavli Institute of Nanoscience, Delft University of Technology,
2600 GA Delft, Netherlands. 2Department of Applied Physics,
Eindhoven University of Technology, 5600 MB Eindhoven,
Netherlands.
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Anomalous Zero-Bias Conductance Peak in a Nb−InSb Nanowire−Nb
Hybrid Device
M. T. Deng,† C. L. Yu,† G. Y. Huang,† M. Larsson,† P. Caroff,‡ and H. Q. Xu†,§,*
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ABSTRACT: Semiconductor InSb nanowires are expected to provide an
excellent material platform for the study of Majorana fermions in solid
state systems. Here, we report on the realization of a Nb−InSb nanowire−
Nb hybrid quantum device and the observation of a zero-bias conductance
peak structure in the device. An InSb nanowire quantum dot is formed in
the device between the two Nb contacts. Due to the proximity effect, the
InSb nanowire segments covered by the superconductor Nb contacts turn
to superconductors with a superconducting energy gap ΔInSb ∼ 0.25 meV.
A tunable critical supercurrent is observed in the device in high back gate
voltage regions in which the Fermi level in the InSb nanowire is located
above the tunneling barriers of the quantum dot and the device is open to
conduction. When a perpendicular magnetic field is applied to the devices,
the critical supercurrent is seen to decrease as the magnetic field increases.
However, at sufficiently low back gate voltages, the device shows the quasi-particle Coulomb blockade characteristics and the
supercurrent is strongly suppressed even at zero magnetic field. This transport characteristic changes when a perpendicular
magnetic field stronger than a critical value, at which the Zeeman energy in the InSb nanowire is Ez ∼ ΔInSb, is applied to the
device. In this case, the transport measurements show a conductance peak at the zero bias voltage and the entire InSb nanowire
in the device behaves as in a topological superconductor phase. We also show that this zero-bias conductance peak structure can
persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the
InSb nanowire.
KEYWORDS: Majorana fermion, InSb nanowire, topological superconductor, zero-bias conductance peak

The search for Majorana fermions is one of the most
prominent fundamental research tasks in physics

today.1−5 Majorana fermions are an elusive class of fermions
that act as their own antiparticles.6 Although an extensive effort
has been made worldwide in particle physics, Majorana
fermions have so far not been convincingly discovered in free
space. In recent years, numerous proposals7−21 for probing
Majorana fermions in solid state systems have been suggested.
The most recent ones are to explore a topological super-
conductor phase of a strong spin−orbit coupled semiconductor
nanowire in the proximity of an s-wave superconductor.17−19

These proposals have stimulated a new wave of searches for
Majorana fermions in solid state systems.22−26

Epitaxially grown InSb nanowires are the most promising
material systems for the formation of hybrid devices with an s-
wave superconductor in which zero-energy Majorana fermions
can be created under the application of an external magnetic
field of a moderate strength. InSb nanowires27−29 possess a
large electron g factor (|g*| ∼ 30 − 70), a strong spin−orbit
interaction strength (with a spin−orbit interaction energy in
the order of ΔSOI ∼ 0.3 meV), and a small electron effective

mass (m* ∼ 0.015me). These properties should allow to
generate a helical liquid in the InSb nanowire, by applying a
relatively small magnetic field, and a nontrivial topological
superconductor,17−19 which supports a pair of Majorana
fermions, by coupling the InSb nanowire to an s-wave
superconductor under experimentally feasible conditions. The
s-wave superconductor will introduce superconductivity into
the InSb nanowire by the proximity effect30 and the external
magnetic field will then drive the strongly spin−orbit coupled
nanowire system to a topological superconductor phase
through Zeeman splitting. The giant Lande ́ g-factor of
InSb27,28 guarantees a significantly large Zeeman splitting at a
magnetic field well below the critical magnetic field of the s-
wave superconductor.
A topological superconductor nanowire can be achieved by

covering an entire InSb nanowire with an s-wave super-
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Parity lifetime of bound states in a proximitized
semiconductor nanowire
A. P. Higginbotham1,2†, S. M. Albrecht1†, G. Kiršanskas1, W. Chang1,2, F. Kuemmeth1, P. Krogstrup1,
T. S. Jespersen1, J. Nygård1,3, K. Flensberg1 and C. M. Marcus1*
Quasiparticle excitations can compromise the performance of
superconducting devices, causing high-frequency dissipation,
decoherence in Josephson qubits1–6, and braiding errors in
proposed Majorana-based topological quantum computers7–9.
Quasiparticle dynamics have been studied in detail in metal-
lic superconductors10–14 but remain relatively unexplored in
semiconductor–superconductor structures, which are now
being intensely pursued in the context of topological su-
perconductivity. To this end, we use a system comprising
a gate-confined semiconductor nanowire with an epitaxially
grown superconductor layer, yielding an isolated, proximitized
nanowire segment. We identify bound states in the semicon-
ductor by means of bias spectroscopy, determine the char-
acteristic temperatures and magnetic fields for quasiparticle
excitations, andextract aparity lifetime (poisoning time)of the
bound state in the semiconductor exceeding 10ms.

Semiconductor–superconductor hybrids have been investigated
for many years15–19, but have received renewed interest as
platforms for emergent topological superconductors with Majorana
end modes. Such modes are expected to show non-Abelian
statistics, allowing, in principle, topological encoding of quantum
information20–22 among other interesting effects23,24.

Transport experiments on semiconductor nanowires proximi-
tized by a grounded superconductor have recently revealed charac-
teristic signatures of Majorana modes25,26. Semiconductor quantum
dots with superconducting leads have also been explored exper-
imentally27–30, and have been proposed as a basis for Majorana
chains31–33. Here, we expand these geometries by creating an isolated
semiconductor–superconductor hybrid quantum dot (HQD) con-
nected to normal leads. The device forms the basis of an isolated,
mesoscopic Majorana system with protected total parity34,35.

The measured device consists of a hexagonal InAs nanowire
with epitaxial superconducting Al on two facets36,37, and Au ohmic
contacts (Fig. 1a,b), forming a normal metal–superconductor–
normal metal (NSN) device. Four devices showing similar
behaviour have been measured. Differential conductance, g , was
measured in a dilution refrigerator (T ∼ 50 mK) using standard
lock-in techniques. Local side gates and a global back gate were
adjusted to form an Al–InAs HQD in the Coulomb blockade
regime. The lower right gate,VR, was used to tune the occupation of
the dot, with a linear compensation from the lower left gate, VL, to
keep tunnelling to the leads symmetric. We parameterize this with
a single effective gate voltage, VG (see Supplementary Information).

Differential conductance as a function of VG and source–drain
bias, VSD, reveals a series of Coulomb diamonds, corresponding
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Figure 1 | Nanowire-based hybrid quantum dot. a, Scanning electron
micrograph of the reported device, consisting of an InAs nanowire (grey)
with a segment of epitaxial Al on two facets (blue) and Ti/Au contacts and
side gates (yellow) on a doped silicon substrate with 100 nm oxide.
b, Device schematic and measurement set-up, showing the orientation of
the magnetic field, B. c, Di!erential conductance, g, as a function of
e!ective gate voltage, VG, and source–drain voltage, VSD, at B=0. Even (e)
and odd (o) occupied Coulomb valleys are labelled.

to incremental single-charge states of the HQD (Fig. 1c). Whereas
conductance features at high bias are essentially identical in each
diamond, at low bias,VSD<0.2mV, a repeating even–odd pattern of
left- and right-facing conductance features is observed. This results
in an even–odd alternation of Coulomb blockade peak spacings
at zero bias, similar to metallic superconductors38,39. However, the
parity-dependent reversing pattern of subgap features at non-zero
bias has not been reported before, to our knowledge. The repeating
even–odd pattern indicates that a parity-sensitive bound state is be-
ing repeatedly filled and emptied as electrons are added to theHQD.

The measured charging energy, EC = 1.1 meV, and
superconducting gap, ∆= 180µeV, satisfy the condition (∆<EC)
for single electron charging40,41. Differential conductance at low
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Spin-resolved Andreev levels and parity crossings
in hybrid superconductor–semiconductor
nanostructures
Eduardo J. H. Lee1, Xiaocheng Jiang2, Manuel Houzet1, Ramón Aguado3, Charles M. Lieber2

and Silvano De Franceschi1*

The physics and operating principles of hybrid superconductor–semiconductor devices rest ultimately on the magnetic
properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of
the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to
a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be
lifted without destroying superconductivity. We show that a spin-split Andreev level crossing the Fermi energy results in a
quantum phase transition to a spin-polarized state, which implies a change in the fermionic parity of the system. This
crossing manifests itself as a zero-bias conductance anomaly at finite magnetic field with properties that resemble those
expected for Majorana modes in a topological superconductor. Although this resemblance is understood without evoking
topological superconductivity, the observed parity transitions could be regarded as precursors of Majorana modes in the
long-wire limit.

When a normal-type (N) conductor is connected to a
superconductor (S), superconducting order can leak
into it to give rise to pairing correlations and an

induced superconducting gap. This phenomenon, known as the
superconducting proximity effect, is also expected when the N con-
ductor consists of a nanoscale semiconductor whose electronic
states have a reduced dimensionality and can be tuned by means
of electric or magnetic fields. This hybrid combination of supercon-
ductors and low-dimensional semiconductors offers a versatile
ground for novel device concepts1. Some examples include sources
of spin-entangled electrons2–4, nanoscale superconducting magnet-
ometers5 or recently proposed qubits based on topologically pro-
tected Majorana fermions6–8. Such concepts, which form an
emerging domain between superconducting electronics and spin-
tronics, rest on a rich and largely unexplored physics that involves
both superconductivity and spin-related effects5,9–12. Here we
address this subject by considering the lowest dimensional limit
where the N conductor behaves as a small quantum dot (QD)
with a discrete electronic spectrum. In this case, the superconduct-
ing proximity effect competes with the Coulomb blockade phenom-
enon, which follows from the electrostatic repulsion among the
electrons of the QD13. Although superconductivity privileges the
tunnelling of Cooper pairs of electrons with opposite spin, and
thereby favours QD states with even numbers of electrons and
zero total spin (that is, spin singlets), the local Coulomb repulsion
enforces a one-by-one filling of the QD, and thereby stabilizes not
only even but also odd electron numbers.

To analyse this competition, let us consider the elementary case
of a QD with a single, spin-degenerate orbital level. When the dot
occupation is tuned to one electron, two ground states (GSs) are
possible: a spin doublet (spin 1/2), |Dl¼ | ! l,| " l, or a spin
singlet (spin zero), |Sl, whose nature has two limiting cases. In the

large superconducting gap limit (D#1), the singlet is supercon-
ducting like, |Sl¼2v*| ! "lþ u|0l, which corresponds to a
Bogoliubov-type superposition of the empty state, |0l, and the
two-electron state, | ! "l. By contrast, in the strong coupling limit,
where the QD–S tunnel coupling, GS, is much larger than D, the
singlet state is Kondo-like, resulting from the screening of the
local QD magnetic moment by quasiparticles in S. Even though
the precise boundary between the superconducting-like and
Kondo-like singlet states is not well-defined14, one can clearly ident-
ify changes in the GS parity, namely whether the GS is a singlet (fer-
mionic even parity) or a doublet (fermionic odd parity), as we show
here. The competition between the singlet and doublet states is gov-
erned by different energy scales: D, GS, the charging energy, U, and
the energy, 10, of the QD level relative to the Fermi energy of the S
electrode (see Fig. 1a)14–23. Previous works that address this compe-
tition focused either on Josephson supercurrents in S–QD–S
devices11,24 or on the subgap structure in S–QD–S or N–QD–S geo-
metries25–33. Although the QD–S GS could be inferred in some of
the above studies, a true experimental demonstration of the GS
parity requires its magnetic properties to be probed.

Here we report a tunnel spectroscopy experiment that probes the
magnetic properties of a QD–S system.With the aid of suitably large
magnetic fields, we lifted the degeneracy of the spinful states (that is,
|Dl) and measured the corresponding effect on the lowest-energy
subgap excitations of the system (that is, |Dl↔ |Sl transitions).
This experiment was carried out on a N–QD–S system, where the
N contact is used as a weakly coupled tunnel probe. In this geome-
try, a direct spectroscopy of the density of states in the QD–S system
is obtained through a measurement of the differential conductance,
dI/dV, as a function of the voltage difference, V, between N and S. In
such a measurement, an electrical current measured for |V|,D/e is
carried by so-called Andreev reflection processes, each of which

1SPSMS, CEA-INAC/UJF-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France, 2Harvard University, Department of Chemistry and Chemical
Biology, Cambridge, Massachusetts 02138, USA, 3Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas (CSIC),
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Quantized Majorana conductance
Hao Zhang1*, Chun-Xiao Liu2*, Sasa Gazibegovic3*, Di Xu1, John A. Logan4, Guanzhong Wang1, Nick van Loo1, 
Jouri D. S. Bommer1, Michiel W. A. de Moor1, Diana Car3, Roy L. M. Op het Veld3, Petrus J. van Veldhoven3, Sebastian Koelling3, 
Marcel A. Verheijen3,5, Mihir Pendharkar6, Daniel J. Pennachio4, Borzoyeh Shojaei4,7, Joon Sue Lee7, Chris J. Palmstrøm4,6,7, 
Erik P. A. M. Bakkers3, S. Das Sarma2 & Leo P. Kouwenhoven1,8

Majorana zero-modes—a type of localized quasiparticle—hold 
great promise for topological quantum computing1. Tunnelling 
spectroscopy in electrical transport is the primary tool for 
identifying the presence of Majorana zero-modes, for instance 
as a zero-bias peak in differential conductance2. The height of 
the Majorana zero-bias peak is predicted to be quantized at the 
universal conductance value of 2e2/h at zero temperature3 (where 
e is the charge of an electron and h is the Planck constant), as a 
direct consequence of the famous Majorana symmetry in which a 
particle is its own antiparticle. The Majorana symmetry protects 
the quantization against disorder, interactions and variations 
in the tunnel coupling3–5. Previous experiments6, however, have 
mostly shown zero-bias peaks much smaller than 2e2/h, with a 
recent observation7 of a peak height close to 2e2/h. Here we report a 
quantized conductance plateau at 2e2/h in the zero-bias conductance 
measured in indium antimonide semiconductor nanowires covered 
with an aluminium superconducting shell. The height of our zero-
bias peak remains constant despite changing parameters such as the 
magnetic field and tunnel coupling, indicating that it is a quantized 
conductance plateau. We distinguish this quantized Majorana peak 
from possible non-Majorana origins by investigating its robustness 
to electric and magnetic fields as well as its temperature dependence. 
The observation of a quantized conductance plateau strongly 
supports the existence of Majorana zero-modes in the system, 
consequently paving the way for future braiding experiments that 
could lead to topological quantum computing.

A semiconductor nanowire coupled to a superconductor can be 
tuned into a topological superconductor with two Majorana zero-
modes localized at the wire ends1,8,9. Tunnelling into a Majorana mode 
will show a zero-energy state in the tunnelling density-of-states, that 
is, a zero-bias peak (ZBP) in the differential conductance (dI/dV)2,6. 
This tunnelling process is an ‘Andreev reflection’, in which an incom-
ing electron is reflected as a hole. Particle–hole symmetry dictates 
that the zero-energy tunnelling amplitudes of electrons and holes are 
equal, resulting in a perfect resonant transmission with a ZBP height 
quantized at 2e2/h (refs 3, 4, 10), irrespective of the precise tunnelling 
strength3–5. The Majorana nature of this perfect Andreev reflection is a 
direct result of the well-known Majorana symmetry property ‘particle 
equals antiparticle’11,12.

This predicted robust conductance quantization has not yet been 
observed2,6,7,13,14. Instead, most of the ZBPs have a height consider-
ably less than 2e2/h. This discrepancy was first explained by thermal 
averaging15–18, but that explanation does not hold when the peak width 
exceeds the thermal broadening (about 3.5kBT)13,14. In that case, other 
averaging mechanisms, such as dissipation19, have been invoked. The 
main source of dissipation is a finite quasiparticle density-of-states 

within the superconducting gap, often referred to as a ‘soft gap’. 
Substantial advances have been achieved in ‘hardening’ the gap by 
improving the quality of materials, eliminating disorder and inter-
face roughness20,21, and better control during device processing22,23, 
all guided by a more detailed theoretical understanding24. We have 
recently solved all these dissipation and disorder issues21, and here we 
report the resulting improvements in electrical transport leading to the 
elusive quantization of the Majorana ZBP.

Figure 1a shows a micrograph of a fabricated device and schematics 
of the measurement set-up. An InSb nanowire (grey) is partially covered  
(two out of six facets) by a thin superconducting aluminium shell 
(green)21. The ‘tunnel-gates’ (coral red) are used to induce a tunnel 
barrier in the non-covered segment between the left electrical contact 
(yellow) and the Al shell. The right contact is used to drain the current 
to ground. The chemical potential in the segment covered with Al can 
be tuned by applying voltages to the two long ‘super-gates’ (purple).

Transport spectroscopy is shown in Fig. 1b, which displays dI/dV 
as a function of voltage bias V and magnetic field B (aligned with the 
nanowire axis), while fixed voltages are applied to the tunnel- and  
super-gates. As B increases, two levels detach from the gap edge  
(at about 0.2 meV), merge at zero bias and form a robust ZBP. This is 
consistent with the Majorana theory: a ZBP is formed after the Zeeman 
energy closes the trivial superconducting gap and re-opens a topologi cal  
gap8,9. The gap re-opening is not visible in a measurement of the local 
density-of-states because the tunnel coupling to these bulk states is 
small25. Moreover, the finite length (about 1.2 µ m) of the proximi tized  
segment (that is, the part that is superconducting because of the 
proximity effect from the superconducting Al coating) results in  
discrete energy states, turning the trivial-to-topological phase transition 
into a smooth crossover26. Figure 1c shows two line-cuts from Fig. 1b 
extracted at 0 T and 0.88 T. Importantly, the height of the ZBP reaches 
the quantized value of 2e2/h. The line-cut at zero bias in the lower 
panel of Fig. 1b shows that the ZBP height remains close to 2e2/h over a  
sizable range in B field (0.75–0.92 T). Beyond this range, the height 
drops, most probably because of a closure of the superconducting gap 
in the bulk Al shell.

We note that the sub-gap conductance at B =  0 (black curve, left 
panel, Fig. 1c) is not completely suppressed down to zero, reminiscent 
of a soft gap. In this case, however, this finite sub-gap conductance does 
not reflect any finite sub-gap density-of-states in the proximitized wire. 
It arises from Andreev reflection (that is, transport by dissipationless 
Cooper pairs) due to a high tunnelling transmission, which is evident 
from the above-gap conductance (dI/dV for V >  0.2 mV) being larger 
than e2/h. As this softness does not result from dissipation, the Majorana 
peak height should still reach the quantized value27. In Extended Data 
Fig. 1, we show that this device tuned into a low-transmission regime, 
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Also a proposal and experiment to realize a 
single chiral Majorana mode  at the edge of a 
quantum anomalous Hall system through 
proximity effect with an s-wave 
superconductor

Wang,Zhou,Lian,Zhang, 2015
Lin He et al, 2017
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Chiral Majorana fermion modes
in a quantum anomalous Hall
insulator–superconductor structure
Qing Lin He,1*† Lei Pan,1† Alexander L. Stern,3 Edward C. Burks,4 Xiaoyu Che,1

Gen Yin,1 Jing Wang,5,6 Biao Lian,6 Quan Zhou,6 Eun Sang Choi,7 Koichi Murata,1

Xufeng Kou,1,8* Zhijie Chen,4 Tianxiao Nie,1 Qiming Shao,1 Yabin Fan,1

Shou-Cheng Zhang,6* Kai Liu,4 Jing Xia,3 Kang L. Wang1,2*

Majorana fermion is a hypothetical particle that is its own antiparticle.We report transport
measurements that suggest the existence of one-dimensional chiral Majorana fermion
modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled
with a superconductor. As the external magnetic field is swept, half-integer quantized
conductance plateaus are observed at the locations of magnetization reversals, giving a
distinct signature of the Majorana fermion modes. This transport signature is reproducible
over many magnetic field sweeps and appears at different temperatures. This finding may
open up an avenue to control Majorana fermions for implementing robust topological
quantum computing.

M
ajorana fermion, proposed by Ettore
Majorana in 1937 (1), is a putative elemen-
tary spin-1/2 particle with the unusual
property of being its own antiparticle. In
condensed-matter systems, analogs of

Majorana fermions can be realized as quasipar-
ticles of topological states of quantum matter,
such as the n = 5/2 quantumHall state (2), Moore-
Read–type states in the fractional quantum Hall
effect (3), two-dimensional (2D) px + ipy spinless
superconductors (4), strong spin-orbit coupling
semiconductor-superconductor heterostructures
(5, 6), and ferromagnetic atomic chains on a
superconductor (7, 8). Viewed as a supercon-
ducting analog of the quantum Hall state (9),
a chiral topological superconductor (TSC) in two
dimensions has a full pairing gap in the bulk
and an odd number N gapless chiral Majorana
fermion modes at the edge (10, 11). The funda-
mental aspects of the Majorana fermion modes
and their non-Abelian braiding properties can be
potentially used to implement topological qubits
in fault-tolerant quantum computation (12–15).
Numerous schemes to accommodate Majorana

fermion modes in superconductors coupled with
topological matter have been proposed (16–31).
The Majorana zero mode, a 0D version of the
Majorana fermion, is a charge-neutral bound state
that exists strictly at zero energy. Its existence
could be spectroscopically demonstrated by the
“zero-bias conductance anomalies”modulated by
external electrical/magnetic fields (20–27, 32).
Although these observations provide promising
signatures of Majorana bound states, it is difficult
to energetically resolve the contributions from
other effects, such as Kondo correlations, Andreev-
bound states, weak antilocalization, and reflec-
tionless tunneling (20–22, 33–35).
In contrast, a recent theoretical proposal fo-

cuses on the direct transport signatures of the 1D
Majorana fermion modes (16–18). The 1DMajorana
fermion mode satisfies the propagating wave
equation originally proposed by Ettore Majorana
(1). A series of theoretical results (16–18, 36) sug-
gests that a chiral TSC based on a quantum anom-
alous Hall insulator (QAHI) might be a promising
host of 1D Majorana fermion modes because the
chiral Hall state can be achieved without strong
external magnetic fields, preserving supercon-
ductivity. To break time-reversal symmetry, the
single-domain phase of the QAHI requires an
external field of ~0.1 T, which is more than one
order of magnitude lower than the critical field
of typical superconducting metals. By modu-
lating the external field, topological transitions
can lead eventually to the establishment of single
chiral Majorana edge modes (CMEMs).
When a superconductor is coupled to a QAHI

thin film—i.e., a magnetic topological insulator
thin film—a reversal of the magnetization can
induce a series of topological phase transitions.
The proposed scheme is demonstrated in Fig. 1A,
(i) to (vii), where a superconducting region is
introduced in the middle of a QAHI channel. The
effective Hamiltonian of the QAHI region is

written as H0 ¼
X

k
y†
kH0ðkÞyk , with yk ¼

ðctk↑;ctk↓;cbk↑;cbk↓Þ
TandH0ðkÞ¼ kysx~tz$kxsy~tzþ

mðkÞ~tx þ lsz, where cks annihilates an electron
of momentum k and spin s = ↑, ↓; superscripts
t and b denote the top and bottom surface states,
respectively; si and ~tiði ¼ x; y; zÞ are the Pauli
matrices for spins and for the two surfaces, re-
spectively, whereas l is the exchange field along
the z axis induced by the perpendicular ferromag-
netic ordering (18, 37).mðkÞ ¼ m0 þ m1ðk2x þ k2yÞ
describes the hybridization between the top and
bottom surfaces, which is responsible for open-
ing a trivial surface gap (the Chern number C =
0 state). m0 and m1 are the hybridization gap
and the parabolic band component, respective-
ly. The Chern number of the system is C = l / |l|
for |l| > |m0|, where |C| is equal to the number of
the chiral edge channels; for |l| < |m0|, C becomes
0. As a result, by adjusting the external magnetic
field, a transition between a normal insulator
(NI) with C = 0 (zero plateau, Hall conductance
sxy = 0) to a QAHI with C = ±1 (integer plateau,
sxy = ±e2/h) can be achieved (38, 39). In the middle
of the QAHI bar, the proximity to an s-wave super-
conductor drives the QAHI into a superconduct-
ing regime, where a finite superconducting pairing
amplitude is induced to the surface of the QAHI,
and in this case the system can be described by
the Bogoliubov–de Gennes (BdG) Hamiltonian
HBdG ¼

X

k
Y†

kHBdGYk=2, whereYk¼ ½ðctk↑; ctk↓;

cbk↑; c
b
k↓Þ; ðct†$k↑; c

t†
$k↓; c

b†
$k↑; c

b†
$k↓Þ'

T , and

HBdG ¼
!H0ðkÞ $ m Dk

D†
k $H(

0ð$kÞ þ m

"
;

Dk ¼ iD1sy 0
0 iD2sy

# $

Here, m is the chemical potential and D1,2 are
the pairing gap functions of the top and bottom
surface states, respectively (17, 18, 36). In prin-
ciple, each chiral edge state in the quantum Hall
regime is topologically equivalent to two iden-
tical copies of CMEMs, such that the total Chern
number is even (N = 2C in this case). The key to
achieving a single CMEM is to induce a topological
phase with an odd Chern number to separate
the two copies of CMEMs (16). When the struc-
tural symmetry is preserved between the top
and bottom surface states—i.e., D = D1 = D2—
the topological transition in the TSC region can
only occur betweenN = ±2 [Fig. 1A, (i) and (vii)]
and N = 0 (iv), where the QAHI regions expe-
rience a NI-QAHI-NI transition, thanks to the
surface hybridization. The topological phase tran-
sitions for all three regions are synchronized, and
the two CMEMs cannot be distinguished from
each other. However, when the structural inver-
sion symmetry is broken, the pairing amplitudes
of the top and bottom surfaces are different
(D1 6¼ D2), and phases withN = ±1 [Fig. 1A, (ii),
(iii), (v), and (vi)] emerge (17, 18, 36). The half-
integer conductance of the system can be de-
rived from the scattering matrix for the two
QAHI edge states at the entrance and exit of
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On 21 July 2017, Science published the Report “Chiral Majorana fermion modes in a quantum anomalous 
Hall insulator—superconductor structure” by Q. L. He et al. (1). Since that time, raw data files were o!ered 
by the authors in response to queries from readers who had failed to reproduce the findings. Those data files 
did not clarify the underlying issues, and now their provenance has come into question. While the authors’ 
institutions investigate further, we are alerting readers to these concerns. 
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Peaks could be due to disorder


Essential point, zero bias peaks necessary 
but not sufficient condition to establish 
Majoranas


No smoking gun evidence yet

Pan and Das Sarma, 2020

Zhang et al, 2101.11456



But fair to say  Majoranas not ruled out even 
in these platforms


Further experiments may give better results



Other platforms
Historically, first suggestion for possible    
Majorana excitations was in  =5/2 FQHE


e/4 excitations could be shown to have non-
abelian braiding statistics 


 2D  spinless p-wave  superconductor with 
vortices forming Majorana excitations 

ν
Moore-Read state, 1991

Read -Green, 2000



Room for more proposals

Perhaps 2D platforms more 

desirable 



Our recent work

Chiral injection using a QAH edge to detect 
Majorana bound state at the edge of a quantum 
spin Hall insulator - separates incoming electron 
channel from outgoing hole channel

Chiral detection of Majorana bound states at the edge of a quantum spin Hall

insulator

Vivekananda Adak,1 Aabir Mukhopadhyay,1 Suman Jyoti De,2 Udit Khanna,3 Sumathi Rao,2 and Sourin Das1
1
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2
Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211 019, India

3
Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel

A hybrid setup consisting of a superconductivity-proximitized quantum spin Hall (QSH) insulator
and a quantum anomalous Hall (QAH) insulator is proposed for chiral injection of electrons into the
Majorana bound state (MBS). An unexplored region of the phase space involving the exchange field
induced boost of the helical edge state is then proposed for the detection of the MBS. 2-D transport
simulations of our proposed setup is compared with the corresponding setup in the absence of the
QAH region, when moderate disorder and a small but finite bulk out-of-plane magnetic field and
a Rashba field are included. The remarkable contrast between the two results demonstrates the
possibility for an unprecedented immunity from disorder-induced masking of the MBS detection in
our proposed setup.

Introduction : The unambiguous detection of Majorana
bound state (MBS) in a quantum transport measure-
ment has remained a challenge, ever since the first few
attempts made in 2012 [1–4]. The initial experimental at-
tempts were based on the nanowire setup [5, 6] but since
then the field has evolved and two-dimensional platforms
based on helical edge states (HES) [7–9] of quantum spin
Hall (QSH) [10–15] state have emerged as an alterna-
tive [16–26]. These platforms for detecting the MBS can
be used to implement both the litmus tests prescribed for
the detection of the MBS, namely, the 2e2/h conductance
peak [27] and the 4⇡ Josephson effect [20, 28].

The aim of this work is two fold - (a) to come up with
a proposal for the detection of the MBS in the helical
edge state based on the 2e2/h conductance peak such
that it is immune to disorder which could mask its clear
signature, and (b) to identify a 2-D parameter space for
the detection of the MBS comprising of both the in-plane
and out-of-plane components of an applied exchange field
which acts on the edge of the QSH state hosting the 1-
D topological superconductor induced by the proximity
to an s-wave superconductor. In the presence of an ap-
plied exchange field perpendicular to the spin quantiza-
tion axis (taken to be in the out-of-plane direction [29])
a topological transition, from the superconducting to the
insulating state, takes places as a function of the field
strength [30]. In contrast, an exchange field parallel to
the spin quantization axis leads to a topological transi-
tion into a gapless superconducting phase once the field
strength is of the order of the superconducting gap [31].
The combined effect of the two exchange fields is cap-
tured by a zero bias conductance scan which effectively
acts as a phase diagram.

Formidable challenges in detection of MBS formed in
the edge states of the QSH via the 2e2/h conductance
peak is related to backscattering of electrons induced
by a variety of perturbations which include the presence
of random exchange fields, magnetic impurities and the
Kondo effect, electron-phonon scattering, multi-electron

G

FIG. 1. Top: Schematic of the proposed device consisting of a
junction between a QSH insulator (deeper color) and a QAH
insulator (lighter color). Superconductivity is induced in part
of the edge through proximity to an s-wave grounded super-
conductor. In the topological phase, a MBS (indicated by the
yellow circle) is localized at the boundary between the the
superconductor and the ferromagnetic barrier (Ferro). The
dimensions of the three leads in gray (S, D1 and D2), the
ferromagnetic barrier and the superconducting region at the
edge used in the numerical simulation are given in units of the
lattice spacing ‘a’. ‘G’ indicates a gated region which is in-
cluded to amplify possible effects resulting from the presence
of disorder (motivated by Ref. [18]). The white and green
lines represent the edge states with opposite spin polariza-
tion.
Bottom: Effective circuit of the setup. The electrons injected
by the source (S) are reflected as electrons and holes at the
N-S junction and collected at lead D2. In the gapless phase,
electrons can be transmitted through the superconductor and
collected at lead D1. This physical separation of the incom-
ing and reflected channels at the N-S junction is an inherent
advantage of the QSH based setup.

scattering due to electron-electron interactions, scatter-
ing induced by the coupling to nuclear spins, etc [9, 32–
51]. Such concerns led to theoretical studies which at-
tempted to spatially separate the left and right movers
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Important point  by using  QAH insulator edge as a 
source, we can separate incoming and outgoing current, 
so impervious to disorder


Disorder averaged comparison at zero and finite 
temperatures - chiral injection retains height of peak at 
finite temperatures much better 
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Main point is there is a much bigger phase space  in the 2 D 
platform where there is a robust possibility for seeing the 
Majorana
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Fingerprints of Majorana bound states in Aharonov Bohm geometry
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We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound
state (MBS) embedded in one of its arm and is threaded by Aharonov Bohm (AB) flux �. We
show that by varying the AB flux, the two leads go through resonance in an anti-correlated fashion
while the resonance conductance is quantized to 2e2/h. We further show that such anti-correlation
is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-
correlation in conductance when studied as a function of � provides a unique signature of the MBS
which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms
of tunneling conductances. We argue that the relative phase between the tunneling amplitude of
the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0,⇡ for
the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the AB e↵ect
between the MBS and ABS.

PACS numbers: 71.10.Pm,74.45.+c,74.78.Na,73.50.Td

Introduction :- Zero energy Majorana bound states
(MBS) which appear as end states of a 1-D p-wave
superconductor have been attracting a lot of interest
recently1,2, mainly due to their topological nature and
relevance3 in topological quantum computation. Al-
though serious attempts for confirming the existence of
the MBS have been made experimentally4,5, their out-
come remains controversial, and it is perhaps fair to say
that there still has not been a definitive experiment to
verify their existence. The primary reason for this is
that it is not easy to distinguish Majorana modes from
other spurious zero energy modes. This has also led to
considerable theoretical e↵ort6 to look for clearly distin-
guishable robust signals of Majorana modes.

Many earlier theoretical studies have focussed on
promising physical systems that support Majorana
modes8,9. Another focus10,11 has been understanding
and extending the proto-typical model that hosts Ma-
jorana modes, which is the Kitaev model12. There have
also been generalisations which yield more than one Ma-
jorana mode at each of the edges13,14, Floquet generation
of Majorana modes15,16, etc.

In this letter, we show that the Aharonov-Bohm (AB)
e↵ect in a ring geometry with a MBS embedded in one of
its arm can provide a distinct signature which cannot be
faked by an Andreev bound state(ABS). Earlier attempts
to use AB flux interferometers have been in the context
of teleportation17,18 or non-local conductance or persis-
tent currents19, but they involve the MBS at both ends
of a wire. Many other recent proposals which discuss
distinguishing signatures of the MBS rely on quantum
noise measurements20 which are in general di�cult to im-
plement. In contrast, we propose conductance measure-
ments which can clearly distinguish the Majorana from
a spurious zero mode. Our proposed setup comprises of
a two terminal ring geometry as shown in Fig.1, with di-
rect coupling between the leads as well as coupling via
a MBS/ABS hosted by a superconductor, which is the
third lead and which remains grounded for our proposal.

�

MBS

I1

lead 1 lead 2

I2

T
S
C

V V

FIG. 1: (color online) Schematic illustration of the AB ring
setup with two normal leads, at voltage V , directly coupled
to each other as well as via a MBS/ABS hosted at the edge
of a grounded topological/non-topological superconductor.

We show that when both the normal leads are equally bi-
ased with respect to the grounded superconductor, con-
structive resonance for one of the normal leads is always
accompanied by a destructive anti-resonance on the other
normal lead. As the conductance on each lead has flux
periodicity of a flux quantum (�0 = hc/e), each normal
lead goes through a resonance and an anti-resonance as
the phase of the direct tunneling term, which is tunable
by the AB flux, changes by �0. On the contrary, when
we replace the MBS by an ABS in the above described
setup, we find that the current flowing through both the
leads remains equal, irrespective of the variation of the
AB flux. Hence the anti-correlation in current obtained
as function of the flux can be considered as a robust and
direct signature of the MBS.
Tunneling into the MBS: To begin with, we consider

a model where a MBS is tunnel coupled to two normal
leads. We will later add a direct tunneling term (with
a complex phase) between the two leads to convert it
into an e↵ective Hamiltonian describing the topological
equivalent of a two path interferometer with an AB flux
enclosed(see Fig.[1]) where the AB flux is given by the
phase of the complex tunneling amplitude. The Hamil-
tonian for the system in the absence of direct tunneling

Fingerprints of Majorana bound 
states in Aharanov-Bohm geometry



Important point is that this geometry also, the 
conductance is measured not only as a 
function of the voltages, but also as a 
function of the flux through the ring
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spurious ABS
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FIG. 2: (color online) (a) and (b) ((c) and (d)) give the con-
ductances on the two wires (red and blue) and noise (red for
cross-correlation and blue for auto-correlation) for the AB in-
terferometer with a MBS (ABS) on one of its arms as a func-
tion of the flux at various temperatures and voltages. The
anti-correlation of the currents in the MBS case and the posi-
tive correlation of the currents for the ABS case as a function
of the flux survives even at finite temperatures and voltages.
Note also that the value of the total conductance G1 + G2

is quantised to 2e2/h for the MBS case, whereas it is non-
universal and can even go above that value for the ABS case.
The values of the temperature and voltage chosen are (i) cir-
cles - µ = 0.1�u1, kBT = 0.1�u1 (ii) triangles - µ = 0.1�u1,
kBT = �u1 (i) squares - µ = �u1, kBT = 0.1�u1 (ii) crosses
- µ = �u1, kBT = �u1. The tunneling amplitude parameters
are chosen to be u1 = u2 = t1 = t2 = v1

2 = � v2
2 = �u1p

2⇡⌫
, ⌧0 =

�u1
2⇡⌫ with �u1(= 2⇡⌫|u1|2) = �t1(= 2⇡⌫|t1|2) = 1.

the coupling is to the other Majorana mode, where the
phases di↵er by e

±i⇡ = �1. This phase rigidity of the
couplings to the electrons and holes in the leads is again
a feature of the MBS which is not shared by an accidental
zero energy ABS. Hence, if this phase can be varied in a
desirable fashion, it can provide a distinguishing feature
between a MBS and an accidental zero energy ABS. But
in general this is not possible; hence addition of the direct
tunneling path with an enclosed flux discussed in this
letter provides a minimal set up for accessing the above
described di↵erence between the ABS and the MBS.

Finally we also include direct tunneling between the
leads to study the AB set up for the ABS. However, since
there are many parameters to vary, the results are highly
dependent on the parameters chosen and the results for
some typical values are shown in Figs. 2c and 2d and
Figs. 3c and 3d. The only general feature that we see is
that the conductance on the two leads remain identical,
(but the cross-correlations can be positive or negative),
irrespective of details of the AB flux, hence maintaining
its contrast to the MBS case. This complete our study
of AB set up for the ABS.

Discussion and conclusion:- In this paper, we have at-
tempted to distinguish between signatures of a MBS and
an accidental zero energy ABS by studying the conduc-
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FIG. 3: (color online) (a) ((c)) shows the exponential fall-
o↵ of the di↵erential conductance on one of the wires as
a function of the voltage for di↵erent temperatures for the
MBS(ABS) case. For the MBS case, the zero bias peak is
quantised to e2/h (for a single wire) at zero temperature and
then reduces to a non-universal value at finite temperatures.
For the ABS case, the zero bias peak even at zero tempera-
ture is non-universal. (b) ((d)) shows the cross-correlations
of the current through the two leads as a function of the volt-
age at various temperatures. (The legend for the di↵erent
colours is given in (a) and (b) and is the same in all the
figures.) For the MBS case, the cross-correlations are al-
ways negative, whereas they can be positive or negative for
the ABS case. The tunneling amplitude parameters are cho-
sen to be u1 = u2 = t1 = t2 = v1

2 = � v2
2 = �u1p

2⇡⌫
, with

�u1(= 2⇡⌫|u1|2) = �t1(= 2⇡⌫|t1|2) = 1.

tance and noise correlations of two leads in a two path in-
terferometry setup with a superconductor (giving rise to
a MBS or an ABS depending on whether or not it is topo-
logical) embedded in one of its arms. By changing the
phase of the direct tunneling between the leads (equiva-
lent to the AB phase), we find that the conductances in
the two leads are perfectly anti-correlated for the MBS
case, with their sum quantized to be 2e2/h. Furthermore,
the phase of the direct tunneling can be tuned to give
rise to a resonance in one of the leads, which is necessar-
ily accompanied by an anti-resonance in the other lead.
This feature is completely absent for the ABS and hence,
can be used a strong fingerprint for the existence of a
MBS. We have also computed the noise correlations for
both the MBS and the ABS, and attribute the negative
cross-correlations in the MBS case to the strong corre-
lation in the conductances on the two leads, coupled by
the fermionic statistics of the MBS. We point out that for
the coupling to the MBS, the phases between the electron
and hole processes can only be either +1 or �1 (phase
rigidity), whereas they can have an arbitrary phase for
an ABS. This fact leads to distinguishing features in the
transport across an AB set up. So the bottomline is that
the distinction between MBS and ABS is achieved via
just conductance measurements alone. In an AB ring ge-
ometry, the conductances in the two leads can be tuned

Majorana bound state
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FIG. 2: (color online) (a) and (b) ((c) and (d)) give the con-
ductances on the two wires (red and blue) and noise (red for
cross-correlation and blue for auto-correlation) for the AB in-
terferometer with a MBS (ABS) on one of its arms as a func-
tion of the flux at various temperatures and voltages. The
anti-correlation of the currents in the MBS case and the posi-
tive correlation of the currents for the ABS case as a function
of the flux survives even at finite temperatures and voltages.
Note also that the value of the total conductance G1 + G2

is quantised to 2e2/h for the MBS case, whereas it is non-
universal and can even go above that value for the ABS case.
The values of the temperature and voltage chosen are (i) cir-
cles - µ = 0.1�u1, kBT = 0.1�u1 (ii) triangles - µ = 0.1�u1,
kBT = �u1 (i) squares - µ = �u1, kBT = 0.1�u1 (ii) crosses
- µ = �u1, kBT = �u1. The tunneling amplitude parameters
are chosen to be u1 = u2 = t1 = t2 = v1

2 = � v2
2 = �u1p

2⇡⌫
, ⌧0 =

�u1
2⇡⌫ with �u1(= 2⇡⌫|u1|2) = �t1(= 2⇡⌫|t1|2) = 1.

the coupling is to the other Majorana mode, where the
phases di↵er by e

±i⇡ = �1. This phase rigidity of the
couplings to the electrons and holes in the leads is again
a feature of the MBS which is not shared by an accidental
zero energy ABS. Hence, if this phase can be varied in a
desirable fashion, it can provide a distinguishing feature
between a MBS and an accidental zero energy ABS. But
in general this is not possible; hence addition of the direct
tunneling path with an enclosed flux discussed in this
letter provides a minimal set up for accessing the above
described di↵erence between the ABS and the MBS.

Finally we also include direct tunneling between the
leads to study the AB set up for the ABS. However, since
there are many parameters to vary, the results are highly
dependent on the parameters chosen and the results for
some typical values are shown in Figs. 2c and 2d and
Figs. 3c and 3d. The only general feature that we see is
that the conductance on the two leads remain identical,
(but the cross-correlations can be positive or negative),
irrespective of details of the AB flux, hence maintaining
its contrast to the MBS case. This complete our study
of AB set up for the ABS.

Discussion and conclusion:- In this paper, we have at-
tempted to distinguish between signatures of a MBS and
an accidental zero energy ABS by studying the conduc-
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FIG. 3: (color online) (a) ((c)) shows the exponential fall-
o↵ of the di↵erential conductance on one of the wires as
a function of the voltage for di↵erent temperatures for the
MBS(ABS) case. For the MBS case, the zero bias peak is
quantised to e2/h (for a single wire) at zero temperature and
then reduces to a non-universal value at finite temperatures.
For the ABS case, the zero bias peak even at zero tempera-
ture is non-universal. (b) ((d)) shows the cross-correlations
of the current through the two leads as a function of the volt-
age at various temperatures. (The legend for the di↵erent
colours is given in (a) and (b) and is the same in all the
figures.) For the MBS case, the cross-correlations are al-
ways negative, whereas they can be positive or negative for
the ABS case. The tunneling amplitude parameters are cho-
sen to be u1 = u2 = t1 = t2 = v1

2 = � v2
2 = �u1p

2⇡⌫
, with

�u1(= 2⇡⌫|u1|2) = �t1(= 2⇡⌫|t1|2) = 1.

tance and noise correlations of two leads in a two path in-
terferometry setup with a superconductor (giving rise to
a MBS or an ABS depending on whether or not it is topo-
logical) embedded in one of its arms. By changing the
phase of the direct tunneling between the leads (equiva-
lent to the AB phase), we find that the conductances in
the two leads are perfectly anti-correlated for the MBS
case, with their sum quantized to be 2e2/h. Furthermore,
the phase of the direct tunneling can be tuned to give
rise to a resonance in one of the leads, which is necessar-
ily accompanied by an anti-resonance in the other lead.
This feature is completely absent for the ABS and hence,
can be used a strong fingerprint for the existence of a
MBS. We have also computed the noise correlations for
both the MBS and the ABS, and attribute the negative
cross-correlations in the MBS case to the strong corre-
lation in the conductances on the two leads, coupled by
the fermionic statistics of the MBS. We point out that for
the coupling to the MBS, the phases between the electron
and hole processes can only be either +1 or �1 (phase
rigidity), whereas they can have an arbitrary phase for
an ABS. This fact leads to distinguishing features in the
transport across an AB set up. So the bottomline is that
the distinction between MBS and ABS is achieved via
just conductance measurements alone. In an AB ring ge-
ometry, the conductances in the two leads can be tuned

Andreev bound state



Important point, in both cases, MBS is not a 
single measurement, but exists in a range


Signal is robust and harder to mimic by non 
MBS sources


But still at one end of the Topological SC


Perhaps true test is signals of MBS at both 
ends



Parafermions



More exotic anyons

Motivation -  Braiding of Majoranas cannot 
lead to universal quantum computation - it 
does not allow for all possible unitary 
operations


Can one engineer universal topological 
quantum computer? 



Parafermions 

Generalisations of the Majorana modes, which are  
anyons or Ising anyons to  anyons


1D quantum clock model with  flip  and shift  operators 
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∑
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P . Fendley, 2012

σN
j = 1, τN

j = 1, σjτj = τjσje2πi/N



Jordan-Wigner transformation to rewrite in 
terms of `parafermion’ operators 

α2j−1 = σjΠi<jτi, α2j = − eiπ/NτjσjΠi<jτi

αN
i = 1, α†

i = αN−1
i , αjαk = αkαje2πi/N(sgn(k−j)

H = J
L−1

∑
j

(e−iπ/Nα†
2jα2j+1 + h . c.) + h

L

∑
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(eiπ/Nα†
2j−1α2j + h . c.)



Point is that although not solvable in general because of the 
complicated commutation relations, easy to solve in 2 limits


When J=0, h>0,  parafermion operators couple spin at same 
clock site and we get a non-degenerate ground state - trivial 
phase  (maximally disordered limit of clock model)



But when h=0, J>0,  the J term couples parafermions 
on two different spins (maximally ordered limit)


Implies dangling parafermion modes at the two ends


N-fold degenerate due to the possible eigenstates of 
the spin formed by the two end modes - topological 
phase 


Two phases for suitable ranges of J and h



So main point is that parafermions are the 
simplest generalizations of Majorana modes

γ2
i = 1, γiγj = (−1)γjγi

αN
i = 1, αjαk = e(2πi/N)sgn( j−k)αkαj



Engineering parafermion modes 

Expect parafermions at edges of fractional 
topological insulators with superconductors and 
ferromagnets 

'( )*

+,-.//0.1
2

M . Cheng,2012



More promising - realisation in fractional 
quantum Hall edges

+ 34 56 , 7
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. 34 56 / ? @

Clarke, Alicea and Shtengel,2012



Our recent  work

Spontaneous fractional Josephson Current from 
parafermions,                                                                 
Kishore Iyer, Amulya Ratnakar, Aabir 
Mukhopdhyay, Sourin Das, Sumathi Rao, cond-
mat/2208.05504



Two concentric rings of  FQH states


Edges proximitised by SC  and FM
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FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
49–55

as shown below -

 R,"(x = 0) = e
�i�

e
i�1 

†
L,#(x = 0)

 R,"(x = L1) = e
�i�

e
i�2 

†
L,#(x = L2) (2)

where � = cos
�1

⇣
E
�0

⌘
, E is the ABS energy, and �1

and �2 are the phases of the two superconducting re-

gions. The boundary condition assumes that the super-

conductors are wide enough so that the Majorana modes

localized at the interface between SC1/2 and FM2 do

not influence it. The ABS spectrum can then be easily

calculated to be
55

(see Supplemental material)

E = ±�0cos

"
E
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hLi
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where µ denotes the Fermi energy, hLi =
L1+L2

2 , �L =

L1�L2
2 , � = �1 � �2 is the di↵erence of the two su-

perconducting phases and LSC = ~vF /�0 is the su-

perconducting coherence length. In the short junction

limit, that is, L1/2/LSC �! 0, Eq. 3 reduces to the

well known ABS energy for a ballistic junction, given

by, E = ±�0 cos�/2
12,54–56

. Note that the length L1

and L2 influences the ABS energy via the two indepen-

dent linear combination hLi and �L. Importantly, the

term, µ�L/~vF , is additive with � and hence has exactly

the same e↵ect as � - i.e., �L 6= 0 leads to spontaneous

Josephson e↵ect, even when � = 0. In the long junction

limit, the ballistic region hosts multiple Andreev bound

states (ABS), of which only one pair is topological, cross-

ing E = 0 at ✓ = 2µ�L/~vF � � = ±⇡. This can be con-

firmed by placing an impurity asymmetrically inside the

junction (see Figure 1 in supplemental material). Unlike

the short junction limit, where a single pair of topolog-

ical ABS oscillates between the energy window ��0 to

�0, in the long junction limit, the energy window of the

oscillation of topological ABS is shortened by the factor

LSC/hLi.

Z2m Parafermions:-

Now we consider a set-up where the two quantum

Hall liquids at filling fractions ⌫ = 1 are replaced by

⌫ = 1/m and this results in 4m⇡ Josephson e↵ect
33–38,57

.

As shown by Clarke et al.7, this is one of the simplest the-

oretical proposals for realizing parafermion zero modes.

At the interface of the two quantum Hall liquids,

(shown in fig. 1) the Hamiltonian for the gapless counter-

propagating edge modes is given in bosonised form as

H0 =
mvF

4⇡

Z
dx [(@x�R)

2
+ (@x�L)

2
] (4)

Here vF is the Fermi velocity and m = 1/⌫ is the inverse

of the filling fraction and the chiral fields �R,L satisfy
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These properties are su�cient to ensure the proper anti-

commutation relations for the fermion operators defined

as  R/L ⇠ e
im�R/L58–6263

.

Next, we briefly review the results of Lindner et al.64

within our context. We imagine that the edge modes are

fully gapped out by two alternating superconductors and

ferromagnets (i.e., we imagine gapping out the free region

in figure 1(a) by a ferromagnet FM1.) The pairing due to

the two superconductors and the insulating gap induced

by electron backscattering are modelled by adding the

appropriate cosine terms to the Hamiltonian, and the

total Hamiltonian reads H = H0 +HI , where

HI =

X

i=1,2
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dx cos [m (�R(x) + �L(x))]
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The SC/FM proximitized regions are characterized by

integer-valued charge/spin operators, called Q̂j and Ŝj
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FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
49–55

as shown below -
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and �2 are the phases of the two superconducting re-

gions. The boundary condition assumes that the super-

conductors are wide enough so that the Majorana modes

localized at the interface between SC1/2 and FM2 do

not influence it. The ABS spectrum can then be easily

calculated to be
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(see Supplemental material)
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where µ denotes the Fermi energy, hLi =
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2 , � = �1 � �2 is the di↵erence of the two su-

perconducting phases and LSC = ~vF /�0 is the su-

perconducting coherence length. In the short junction

limit, that is, L1/2/LSC �! 0, Eq. 3 reduces to the

well known ABS energy for a ballistic junction, given

by, E = ±�0 cos�/2
12,54–56

. Note that the length L1

and L2 influences the ABS energy via the two indepen-

dent linear combination hLi and �L. Importantly, the

term, µ�L/~vF , is additive with � and hence has exactly

the same e↵ect as � - i.e., �L 6= 0 leads to spontaneous

Josephson e↵ect, even when � = 0. In the long junction

limit, the ballistic region hosts multiple Andreev bound

states (ABS), of which only one pair is topological, cross-

ing E = 0 at ✓ = 2µ�L/~vF � � = ±⇡. This can be con-

firmed by placing an impurity asymmetrically inside the

junction (see Figure 1 in supplemental material). Unlike

the short junction limit, where a single pair of topolog-

ical ABS oscillates between the energy window ��0 to

�0, in the long junction limit, the energy window of the

oscillation of topological ABS is shortened by the factor

LSC/hLi.

Z2m Parafermions:-

Now we consider a set-up where the two quantum

Hall liquids at filling fractions ⌫ = 1 are replaced by

⌫ = 1/m and this results in 4m⇡ Josephson e↵ect
33–38,57

.

As shown by Clarke et al.7, this is one of the simplest the-

oretical proposals for realizing parafermion zero modes.

At the interface of the two quantum Hall liquids,

(shown in fig. 1) the Hamiltonian for the gapless counter-

propagating edge modes is given in bosonised form as

H0 =
mvF
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Here vF is the Fermi velocity and m = 1/⌫ is the inverse
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These properties are su�cient to ensure the proper anti-

commutation relations for the fermion operators defined

as  R/L ⇠ e
im�R/L58–6263

.

Next, we briefly review the results of Lindner et al.64

within our context. We imagine that the edge modes are

fully gapped out by two alternating superconductors and

ferromagnets (i.e., we imagine gapping out the free region

in figure 1(a) by a ferromagnet FM1.) The pairing due to

the two superconductors and the insulating gap induced

by electron backscattering are modelled by adding the

appropriate cosine terms to the Hamiltonian, and the

total Hamiltonian reads H = H0 +HI , where

HI =
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The SC/FM proximitized regions are characterized by

integer-valued charge/spin operators, called Q̂j and Ŝj

Similar to Lindner, 
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Shtengel, 2012



For  case, expect Majoranas at the edges 
will hybridize  to give the  Josephson effect 
as a function of             

ν = 1
4π

ϕ1 − ϕ2 = ϕ

2

FIG. S1. The figure shows a Josephson junction setup consisting of two counter-propagating edge states corresponding to
⌫ = 1 proximitised by two superconductors SC1 and SC2. �0 is the superconducting gap and �i is the superconducting phase
corresponding to SCi. The right and left moving edge (in red and blue) is taken to be of length L1 and L2, respectively. The
right(left) moving edges are defined over x 2 [�L1/2, L1/2] ([�L2/2, L2/2]) about the origin x = 0. The scatterer is placed at
a distance ↵ away from the origin.

where I is the identity matrix. Solving this determinant equation for the energy E, one obtains the following
transcendental equation.
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where hLi = L1+L2
2 , �L = L1�L2

2 , � = �1 � �2 and LSC = ~vF /�0.

II. THE FALSE MAJORANA STATES

We now introduce a scatterer in the ballistic region as shown in fig. S1. The e↵ect of this scatterer on electrons
and holes impinging on it is given by the matrix
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Let the right moving edge be defined over the 1D space x 2 [�L1/2, L1/2] and the left moving edge be defined over
x 2 [�L2/2, L2/2]. Then placing the scatterer symmetrically in the ballistic junction amounts to placing the scatterer
at x = 0. To break the parity symmetry, we place the scatterer asymmetrically in the junction, at x = �↵. We now
define two translation matrices, namely T1 and T2, which takes the particle/hole towards and away from the scatterer.
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The ABS spectrum can be found as earlier, using the argument that the fermionic field returns to itself after a
cycle of length L1 + L2 after consecutive Andreev reflections from both boundaries. This, in the matrix formulation
reduces to

RT2ST1RT2ST1 (x) = I  (x+ L1 + L2) (II.3)

Det [I �RT2ST1RT2ST1] = 0 (II.4)

and from Eq. II.4, we get the quantization condition as
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ABS spectrum is given by the self-consistent equation
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FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
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limit, that is, L1/2/LSC �! 0, Eq. 3 reduces to the

well known ABS energy for a ballistic junction, given

by, E = ±�0 cos�/2
12,54–56

. Note that the length L1

and L2 influences the ABS energy via the two indepen-

dent linear combination hLi and �L. Importantly, the

term, µ�L/~vF , is additive with � and hence has exactly

the same e↵ect as � - i.e., �L 6= 0 leads to spontaneous
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limit, the ballistic region hosts multiple Andreev bound

states (ABS), of which only one pair is topological, cross-

ing E = 0 at ✓ = 2µ�L/~vF � � = ±⇡. This can be con-

firmed by placing an impurity asymmetrically inside the

junction (see Figure 1 in supplemental material). Unlike

the short junction limit, where a single pair of topolog-

ical ABS oscillates between the energy window ��0 to

�0, in the long junction limit, the energy window of the

oscillation of topological ABS is shortened by the factor

LSC/hLi.
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Now we consider a set-up where the two quantum

Hall liquids at filling fractions ⌫ = 1 are replaced by

⌫ = 1/m and this results in 4m⇡ Josephson e↵ect
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As shown by Clarke et al.7, this is one of the simplest the-

oretical proposals for realizing parafermion zero modes.
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within our context. We imagine that the edge modes are

fully gapped out by two alternating superconductors and

ferromagnets (i.e., we imagine gapping out the free region

in figure 1(a) by a ferromagnet FM1.) The pairing due to
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integer-valued charge/spin operators, called Q̂j and Ŝj



ABS spectrum can be calculated  for different 
lengths using scattering matrices 


Main point here is that                          is additive 
with the phase difference 


Hence  leads to spontaneous Josephson effect 
even in absence of phase difference 

ϕ = ϕ1 − ϕ2

δL = L1 − L2
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FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
49–55

as shown below -
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where � = cos
�1
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E
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⌘
, E is the ABS energy, and �1

and �2 are the phases of the two superconducting re-

gions. The boundary condition assumes that the super-

conductors are wide enough so that the Majorana modes

localized at the interface between SC1/2 and FM2 do

not influence it. The ABS spectrum can then be easily

calculated to be
55

(see Supplemental material)
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where µ denotes the Fermi energy, hLi =
L1+L2

2 , �L =

L1�L2
2 , � = �1 � �2 is the di↵erence of the two su-

perconducting phases and LSC = ~vF /�0 is the su-

perconducting coherence length. In the short junction

limit, that is, L1/2/LSC �! 0, Eq. 3 reduces to the

well known ABS energy for a ballistic junction, given

by, E = ±�0 cos�/2
12,54–56

. Note that the length L1

and L2 influences the ABS energy via the two indepen-

dent linear combination hLi and �L. Importantly, the

term, µ�L/~vF , is additive with � and hence has exactly

the same e↵ect as � - i.e., �L 6= 0 leads to spontaneous

Josephson e↵ect, even when � = 0. In the long junction

limit, the ballistic region hosts multiple Andreev bound

states (ABS), of which only one pair is topological, cross-

ing E = 0 at ✓ = 2µ�L/~vF � � = ±⇡. This can be con-

firmed by placing an impurity asymmetrically inside the

junction (see Figure 1 in supplemental material). Unlike

the short junction limit, where a single pair of topolog-

ical ABS oscillates between the energy window ��0 to

�0, in the long junction limit, the energy window of the

oscillation of topological ABS is shortened by the factor

LSC/hLi.

Z2m Parafermions:-

Now we consider a set-up where the two quantum

Hall liquids at filling fractions ⌫ = 1 are replaced by

⌫ = 1/m and this results in 4m⇡ Josephson e↵ect
33–38,57

.

As shown by Clarke et al.7, this is one of the simplest the-

oretical proposals for realizing parafermion zero modes.

At the interface of the two quantum Hall liquids,

(shown in fig. 1) the Hamiltonian for the gapless counter-

propagating edge modes is given in bosonised form as

H0 =
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Z
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] (4)
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These properties are su�cient to ensure the proper anti-

commutation relations for the fermion operators defined

as  R/L ⇠ e
im�R/L58–6263

.

Next, we briefly review the results of Lindner et al.64

within our context. We imagine that the edge modes are

fully gapped out by two alternating superconductors and

ferromagnets (i.e., we imagine gapping out the free region

in figure 1(a) by a ferromagnet FM1.) The pairing due to

the two superconductors and the insulating gap induced

by electron backscattering are modelled by adding the

appropriate cosine terms to the Hamiltonian, and the

total Hamiltonian reads H = H0 +HI , where

HI =

X

i=1,2
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The SC/FM proximitized regions are characterized by

integer-valued charge/spin operators, called Q̂j and Ŝj



No free fermion description, need Luttinger 
liquid physics to describe FQH edge modes

           ParafermionsZ6

2

FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
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fully gapped out by two alternating superconductors and

ferromagnets (i.e., we imagine gapping out the free region

in figure 1(a) by a ferromagnet FM1.) The pairing due to
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FIG. 1. Caricature of an idealized experimental set-up. Fig.
1(a) shows two concentric FQH liquids at filling fractions
⌫"/# = 1/m, (m 2 odd integer), colored red/blue respec-
tively, with counter-propagating edge modes and opposite
spins. The edge modes are proximitized by two supercon-
ductors, SC1 and SC2, colored green, and a ferromagnet
FM2 colored grey. The encircled (yellow) region comprises
the free edges and the magnified version of this is shown in
Fig.1(b). Vg1/2 are gate potentials which can individually al-
ter the length of the edges in the free region. L1/2 are the
lengths of the right moving and left moving edge modes, re-
spectively. �0 and �i are the superconducting gaps and the
superconducting phases corresponding to SCi. The two su-
perconducting segments are considered to be the part of the
same bulk superconductor. The blue stars at the interface
between SCi and FM2 represent localized parafermion zero
modes.

by the set-up. The presence of superconducting corre-

lations on a finite patch of the fermionic edges can be

reduced to Andreev boundary conditions on the edges of

the fermionic fields in the free region of the set-up
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Diagonalised Hamiltonian is now given by 

ϕR(0) + ϕL(0) = 0
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In the absence of the insulator, the parafermion 
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effect
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Hence, spontaneous fractional Josephson current
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Appendix C: Parafermion Josephson effect

In the main text we deduced the qualitative dependence of
the energy, and hence the Josephson current, on the phase dif-
ference ��sc between the two superconductors in Fig. 2(a).
This Appendix explores the physics uncovered there more
quantitatively. We continue to work in the limit where the
tunneling strength M(x) vanishes whereas the pairing fields
in Eq. (15) pin ✓ beneath each superconductor. The normal
region between the superconductors can then be described by
an effective Hamiltonian

H =
mv

2⇡

Z x2+`

x1

dx[(@x')2 + (@x✓)2], (C1)

subject to boundary conditions on '(x1) and '(x2 + `) in-
duced by the neighboring superconductors.

Because (in contrast to Appendix B) the same field is now
pinned at both endpoints, it is essential that one incorporates
compactness of ' in what follows; failure to do so yields in-
correct results for the dependence of the energy on ��sc. We
will for simplicity set '(x1) = 0—that is, we fix the eigen-
value of the operator n̂

(1)
' defined earlier to zero without loss

of generality. At the right boundary, however, we take

'(x2 + `) = mod


⇡

m

✓
n̂

(2)
' +

��sc

2⇡

◆
+ ⇡, 2⇡

�
� ⇡, (C2)

where n̂
(2)
' is the same integer-valued operator introduced pre-

viously. The right-hand side of Eq. (C2) minimizes the pairing
term in Eq. (15) and importantly also restricts '(x2 + `) to lie
between �⇡ and ⇡ for any ��sc and n̂

(2)
' . Imposing this bound

on the range of '(x2 + `) ensures that '(x) need not exhibit
any unnecessary twists between x = x1 and x2 + `.

To diagonalize the Hamiltonian we decompose ', ✓ as fol-
lows:

'(x) = '(x2 + `)
x � x1

x2 + ` � x1

+
1

p
m

1X

k=1

sin �̃k(x)
p

k
i(ak � a

†
k) (C3)

✓(x) = ✓0 +
1

p
m

1X

k=1

cos �̃k(x)
p

k
(ak + a

†
k), (C4)

where �̃k(x) = k⇡(x�x1)
x2+`�x1

and as usual ak are canonical
bosons satisfying [ak, a

†
k0 ] = �k,k0 . In Eq. (C4) ✓0 represents

the zero-momentum component of ✓(x) (note that k = 0 is
excluded from both sums above). The boundary conditions
on '(x) are clearly obeyed in this representation, while the
commutation relations between ', ✓ in Eq. (6) are also pre-
served provided ✓0 and n̂

(2)
' are conjugate variables satisfying

[n̂(2)
' , ✓0] = i. Using the decomposition in Eqs. (C3) and (C4)

one can express the effective Hamiltonian as

H =
1X

k=1

✏̃k(a†
kak + 1/2) + E(��sc) (C5)

E(��sc) =
mv

2⇡

['(x2 + `)]2

x2 + ` � x1
, (C6)
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FIG. 4: Energy versus superconducting phase difference ��sc across
the Josephson junction in the m = 3 case. The six curves shown
correspond to the distinct values of n̂(2)

' characterizing the pinning
of ' under the right superconductor, assuming that ' = 0 beneath
the left superconductor. Provided n̂(2)

' is conserved the energy and
hence the current are both 12⇡ periodic in ��sc.

with '(x2 + `) given by Eq. (C2). The first term in H

above simply describes gapped excitations with energy ✏̃k =
⇡v

x2+`�x1
k, which we assume are absent. More interestingly,

the second term captures the dependence of the energy on the
superconducting phase difference imposed across the junc-
tion.

Since [H, n̂
(2)
' ] = 0 the eigenvalue of n̂

(2)
' is a conserved

quantity that can not change under adiabatic evolution of the
Hamiltonian. It is this crucial property that gives rise to ‘frac-
tional’ Josephson effects. For a fixed initial value of n̂

(2)
' , one

sees from Eqs. (C2) and (C6) that the energy is 4⇡m periodic
in ��sc, despite the fact that the underlying Hamiltonian—
recall Eq. (15)—clearly exhibits 2⇡ periodicity. [Note that
here is where compactness of ' is essential. Had we ex-
pressed '(x2 + `) in Eq. (C2) without modding by 2⇡ the
energy would increase unboundedly with ��sc, which is obvi-
ously physically incorrect.] As a concrete illustration, Fig. 4
displays the energy E(��sc) versus ��sc for the six inequiva-
lent n̂

(2)
' values in the m = 3 case.

As mentioned in the main text the Josephson current flow-
ing across the junction exhibits the same 4⇡m periodicity as
the energy. One should, however, bear in mind the following
caveats that have been raised in the context of the Majorana-
mediated fractional Josephson effect (see, e.g., Refs. 8,33). In
any experiment the measured current will consist of a 4⇡m-
periodic contribution arising from the fused parafermions and

a conventional 2⇡-periodic component flowing in parallel.
(The latter can arise, for example, from the ordinary Joseph-
son current that flows directly between the two parent s-wave
superconductors.) These currents must be disentangled if one
is to utilize Josephson measurements to read out the qubits en-
coded by the parafermions. We also note that in practice var-
ious imperfections—e.g., inelastic processes that change the
value of n̂

(2)
' or additional parafermion couplings that spoil

conservation of n̂
(2)
' —can potentially restore 2⇡ periodicity

of the current. Exploring these subtleties in detail would be
quite interesting, particularly given the fractionalized nature

Clarke, Alicea and 
Shtengel, 2012



Main point is that we now have another knob to 
tune Josephson current along with the difference in 
phase. For , 
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following form:

HSC = ��0

✓Z 0

�lSC

dx cos

h
m
�
�R(x) + �L(x)

�i

+

Z L1+lSC

L1

dx cos

h
m
�
�R(x) + �L(x� 2�L)

�
+ �

i!

(10)

where lSC is the length of the superconducting regions.

Note also that all the phases (�) accumulated in travers-

ing the loop between the two superconductors have been

plugged into the second superconductor using gauge free-

dom. �0 is the magnitude of the superconducting pair-

ing.

Thus, the total Hamiltonian is given by

H = H0 +HSC . In the �0 ! 1 limit, as re-

marked earlier, the field �R + �L is confined to the

minima of the cosine potential and E ⌧ �0, giving us

� = 2⇡± (
2µ�L
~vF ��), resulting in the following boundary

conditions for the finite-length chiral Luttinger liquids

in the junction between the two superconductors:

�R(0) + �L(0) = 0

�R(L1) + �L(L2) = 2

⇣
mod

h
⇡

m

⇣
n̂
SC
2 � �

2⇡

⌘
, 2⇡

i
� ⇡

⌘

⌘ 2⌘̂

(11)

where n̂
SC
2 is an integer-valued operator corresponding

to the pinned minimum of the fields at the right super-

conductor such that it can assume 2m values, n
SC
2 2

{0, 2m � 1}. n̂
SC
1 can be taken as zero without loss of

generality. The modulus is necessary to ensure the com-

pactness of the finite-length bosonic fields. It is interest-

ing to note from equation 7 that ⌘̂/⇡ is nothing but the

spin Ŝ1 of the junction. The e↵ective Hamiltonian for

the ballistic junction between the two superconductors is

given by:

He↵ =
mvF

4⇡

Z L1

�L2

dx (@x�R(x))
2

(12)

where, �R(x, t) is given by
8
(see also supplemental ma-

terial for more details)
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with �L(x) = ��R(�x) and
⇥
n
SC
2 , �̂

⇤
= i, such that

equations 5 and 11 are satisfied. This diagonalizes the

e↵ective Hamiltonian, giving us

He↵ =
mvF

⇡(L1 + L2)
⌘̂
2
+

X

k>0

2⇡kvF

L1 + L2

⇣
a
†
kak +

1

2

⌘
. (14)

SC1 SC2

FM

FIG. 2. A proposed set-up to realize the fractional Joseph-
son e↵ect in a bilayer FQH system, with the top layer at
⌫ = 1/m and the bottom layer at ⌫ = 1 + 1/m. The Lan-
dau levels are manipulated using appropriate gating such that
two counter-propagating chiral states with opposite spins are
brought together. The chiral states at the middle of the sam-
ple (shown in red and blue solid lines) are of importance to
realize Josephson junction geometry. These chiral states are
proximitized by two superconductors, SC1 and SC2, and a
ferromagnet (FM) at the back. The length of the individ-
ual counter-propagating chiral states, in the ballistic region,
can be altered using the external gates, which can drive the
fractional Josephson current and show 4⇡m periodicity. In-
consequential chiral edge states are shown with broken lines
(red and blue) in the two layers.

In Eq. 14, the first term carries the dependence of en-

ergy on the SC phase di↵erence � and on the additional

phase arising due to length di↵erence in the two chiral

modes. Importantly, we note that the
⇥
He↵, n̂

SC
2

⇤
= 0

and as result n̂
SC
2 , is a conserved quantity. For a fixed

eigenvalue of the n̂
SC
2 operator, the energy is 4m⇡ peri-

odic in ✓ = 2µ�L/~vF ��. The Josephson current across

the ballistic region, I✓ / dhHi/d✓, also shows the 4m⇡

periodicity in ✓.

Discussion and Conclusion:
The main focus of this paper has been to show that al-

lowing the length of the counter-propagating chiral edge

states, belonging to two FQH systems, to be di↵erent, in-

troduces a new experimental knob on equal footing with

SC phase bias, hence leading to spontaneous fractional

Josephson e↵ect. We have first demonstrated the fea-

sibility in a ⌫ = 1 quantum Hall set-up where the An-

dreev modes can be computed exactly and shown how

the length di↵erence can lead to a spontaneous Josephson

current. We have then extended our study to a ⌫ = 1/m

set-up with Z2m parafermion modes between the super-

conductors leading to a spontaneous 4⇡m Josephson ef-

fect tunable by the di↵erence in the lengths of the two

edges. Such a finding may be of importance because it

provides an extra handle on the Josephson current, con-

trollable by electrical means, to probe parafermions. For

vF ⇠ 10
4
m/s and µ ⇠ 10 meV

65,66
, change in �L re-

quired to access the 4⇡m Josephson e↵ect turns out to

be a few µm in conventional 2DEG systems, making it

Top layer at ν = 1/m

Bottom layer at  ν = 1 + 1/m
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