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• Demonstration and deployment of 20 qubit ion trap quantum 
computers and quantum simulators and ~50 qubit registers (~20 
qubit q-computer on a cloud)
• Development of detectors, light sources, quantum repeaters and 
quantum link over 5 kms for secure quantum communications
• Development of state of the art and Indigenous quantum sensors 
for photons, NV center based sensors,  inertial sensors and atomic 
clock
• Opto/spin electronic devices utilizing quantum effects in emergent 
materials 
• Indigenization of key technology enablers (materials, devices, 
instrumentation and control systems, algorithms and software) for 
quantum technologies



Plan

● QHE, FQHE, Variational wavefunctions, Laughlin State, Composite 
fermions, Excitations, Entanglement spectra

● Correlations and parent Hamiltonians
● An inverse problem:

○ Root partitions and constraints on the Hamiltonians 
● A modified problem and a formally exactly solvable model on 

multiple Landau levels
● Extensions beyond - to Pfaffian (arxiv: 2206.07789)
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QHE, IQHE

Klitzing et al, PRL 1980
Laughlin PRB 1981
Halperin 1982
Thouless PRB 1983
Chalker Coddington, Prange 
Joynt, ….
Huckstein (RMP 1995)

Beautiful physics bringing 
together ideas of percolation, 
localization, topology, critical 
phenomena, random matrices…



Background - Landau quantization & many body wavefunctions

Measure that 
depends on the 
geometry

Angular momentum m = 0,1,2….



Background - Landau quantization & many body wavefunctions



Background - Inserted flux

Insertion of flux moves each 
single particle states out by 

1 orbital

● If Landau level is fully filled → Many body state is 
“incompressible” → Gapped

● Gap ensures applicability of adiabatic insertion. 
Electrons stay in the radially drifting orbitals.

Laughlin PRB 1981; Halperin PRB 1982; Byers Yang PRL 1961;
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QHE, FQHE

Tsui Stormer Gossard, PRL 
1982;
Laughlin 1983
Haldane 1983

● Rich set of distinct phases
● Phases characterized not by broken symmetry
● No local order parameter
● FQHE: Rich physics arising entirely from strong 

interactions - peculiar in its tractability in terms 
of quantum many body wavefunctions
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Background - Inserted flux

Insertion of flux moves each 
single particle states out by 

1 orbital

● If Landau level is fully filled → Many body state is 
“incompressible” → Gapped

● Gap ensures applicability of adiabatic insertion. 
Electrons stay in the radially drifting orbitals.

Laughlin PRB 1981; Halperin PRB 1982; Byers Yang PRL 1961;
Pruisken, Chalker, Coddington...
Laughlin PRL 1983; Halperin PRL 1983; Arovas Schrieffer Wilczek 1984; Kivelson Rocek 1985

But the fractionally 
occupied systems cannot 
be gapped in the absence 
of interactions !



Gapped states: Composite fermion wavefunctions

Jain PRL 1989, Halperin Lee Read 1993
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Jain PRL 1989, Halperin Lee Read 1993

In the ground state, every electron is in the 
proximity of 2p number of vortices of other 
electrons. → “Holomorphicity” of single particle 
states allows to relate correlation holes as vortices.

Statistically, |wavefunction| is higher when the 
electron coordinate is in the proximity of “zeros” of 
other electrons. Within the space of such 
correlated states, interactions are unimportant.
⇒ These composite fermions are weakly 
interacting

Statistically the electrons feel a reduced effective 
field 
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WF of n filled Landau 
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2p  vortices of every 
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In the ground state, every electron is in the 
proximity of 2p number of vortices of other 
electrons. → “Holomorphicity” of single particle 
states allows to relate correlation holes as vortices.

Statistically, |wavefunction| is higher when the 
electron coordinate is in the proximity of “zeros” of 
other electrons. Within the space of such 
correlated states, interactions are unimportant.
⇒ These composite fermions are weakly 
interacting

Statistically the electrons feel a reduced effective 
field 



Gapped states: Composite fermion wavefunctions

The wf has a small component in higher LLs. 
Projection of this to the LLL is energetically better.

Jain PRL 1989
Jain Kivelson Trivedi PRL 1990
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Gapped states: Composite fermion wavefunctions

Jain PRL 1989
Jain Kivelson Trivedi PRL 1990

Example: Laughlin ⅓ state corresponds to 2p=2 
fluxes attached to electrons. These objects fill one 
LL ie n=1.

In the ground state, every electron is in the 
proximity of 2p number of vortices of other 
electrons. → “Holomorphicity” of single particle 
states allows to relate correlation holes as vortices.

Statistically, |wavefunction| is higher when the 
electron coordinate is in the proximity of “zeros” of 
other electrons. Within the space of such 
correlated states, interactions are unimportant.
⇒ These composite fermions are weakly 
interacting

Statistically the electrons feel a reduced effective 
field 



Aside: Beyond the simplest cases

Describes almost all single 
component states below v=1/2p

1/3, 1/5, 1/7…
2/5, 3/7,4/9…

….

Single component states above 
v=1/2p

2/3, 3/7...

Spin unpolarized states

Multicomponent cases: Valley, Spin, Multilayer

Bolotin et al Nature 2009, Liu et al Nature Physics 2019, Li et al Nature Physics 2019

R R Du et al PRL 1995, Park Jain PRL 1998, Ashoori 
Nat Phy 2020 …, S Davenport, Simon PRB 2012



Describing low energy excitations
Mapping from the FQHE of electrons to IQHE of composite fermions works far beyond the gapped states. 
Though tedious, these can be numerically compared with finite ED calculations. All symmetry quantum numbers 
and 

Quasiholes of charge 
e/(2pn+1)

Quasiholes of charge 
e/(2pn+1)

Particle-hole 
exciton mode

Charged, spin skyrmions

Kamila, Jain 1998
K Park, 2000 K Park, 2000

Sondhi et al PRB 1993

Balram et al Nat Comm 
2015

k



Wavefunctions of gapless edge excitations

Sreejith, S Jolad, D Sen, Jain PRB 2012

Edge of each CF Landau level corresponds to a 
chiral bosonic 1D mode with velocity determined by 
the confinement potential.

Filling fraction 

is associated with n filled CF Landau levels. 
⇒ Its edge is described by n chiral bosons.

Wen 1992, Wen 1995, Chang, Rev Mod Phys 2003, Moore Haldane 
PRB 1997,Wu Sreejith Jain PRB 2012, Sreejith, Jolad, Sen, Jain PRB 
2011



Wavefunctions of gapless edge excitations

Sreejith, S Jolad, D Sen, Jain PRB 2012

Edge of each CF Landau level corresponds to a 
chiral bosonic 1D mode with velocity determined by 
the confinement potential.

Filling fraction 

is associated with n filled CF Landau levels. 
⇒ Its edge is described by n chiral bosons.

Wen 1992, Wen 1995, Chang, Rev Mod Phys 2003, Moore Haldane 
PRB 1997,Wu Sreejith Jain PRB 2012, Sreejith, Jolad, Sen, Jain PRB 
2011

Edge structures can be 
significantly more complex 
due to remnant interactions 
and confinement effects - 
lead to edge 
reconstructions, 
fractionalization at the edge 
even in IQHE…

See 
PRL 125, 076802 (2020)



Wavefunctions of gapless edge excitations

Sreejith, S Jolad, D Sen, Jain PRB 2012

Edge of each CF Landau level corresponds to a 
chiral bosonic 1D mode with velocity determined by 
the confinement potential.

Filling fraction 

is associated with n filled CF Landau levels. 
⇒ Its edge is described by n chiral bosons.

Wen 1992, Wen 1995, Chang, Rev Mod Phys 2003, Moore Haldane 
PRB 1997,Wu Sreejith Jain PRB 2012, Sreejith, Jolad, Sen, Jain PRB 
2011

Henderson, Sreejith, Simon 2021,  
Li, Haldane 2007; Dubail, Read 
Rezayi 2012; Anand, Rushikesh, 
Balram, Sreejith 2022; 

Also shows in the 
entanglement spectrum 



Real space entanglement spectra as a proxy for edge 
excitations

Li, Haldane 2007, 
Dubail Read Rezayi 2012, Qi Katsura Ludwig 2011, Henderson, Sreejith, Simon PRB 2021, Rodriguez, Simon, Slingerland PRL 
2012, A Chandran et al PRB 2011, Sterdyniak et al PRB 2012

B essentially acts as a confinement to A in a sense.

A if measured will be found most likely in the GS of A or in one of the low 
energy excitations of A → which are the edge excitations of A.

The eigenvalues, eigenstates of the reduced density matrix gives the 
probability of finding A in these low energy edge excitation states. Close 
energy eigenstates should have similar probability of occurrence.

Reduced density matrix is block diagonal in angular momenta (for 
rot-symmetric cut)

⇒ Counting of low “entanglement energy ” (-log eigenvalue) states convey 
the information about the counting of edge excitations at each angular 
momenta.



Real space entanglement spectra as a proxy for edge 
excitations

Li, Haldane 2007, 
Dubail Read Rezayi 2012, Qi Katsura Ludwig 2011, Henderson, Sreejith, Simon PRB 2021, Rodriguez, Simon, Slingerland PRL 
2012, A Chandran et al PRB 2011, Sterdyniak et al PRB 2012

Counting of low “entanglement energy ” (-log eigenvalue) states contain the 
information about the counting of edge excitations at each angular 
momenta.

In simple states, edge counting can be inferred from the ansatz. In 
cases where there is an ansatz for the GS alone, ES can be an 
unbiased way to obtain identify the edge counting.

→ Computing the entanglement spectra is computationally expensive in 
general.

Reduced density matrix is huge ~ dim(A) x dim(A) for even very small 
systems.



Efficient computation of Real space entanglement spectrum

A Anand, Rushikesh Patil, AC Balram, GJ Sreejith PRB 2022
G J Henderson, GJ Sreejith, S H Simon PRB 2021, I Rodriguez, S H Simon, J Slingerland PRL 2012

Eigenvalues of the reduced density matrix can be efficiently computed for 
wavefunctions that can be written as product of Slater determinants

→ includes CF states 
→ Parton states (next talk)

IDEA

Difficult Tractable if we can explicitly write 
down states i, j and c_ij
And if ΛB, ΛA are small.
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Efficient computation of Real space entanglement spectrum

I Rodriguez, S H Simon, J Slingerland PRL 2012
A Anand, Rushikesh Patil, AC Balram, GJ Sreejith PRB 2022
GJ Henderson, GJ Sreejith, S H Simon PRB 2021

Can be efficiently 
computed using Monte 
Carlo methods

Combinatorial factors



Efficient computation of Real space entanglement spectrum

A Anand, Sreejith in preparation

Computed by brute force integrations and 
summations:
~200 processors, 2-3 days

(generalization of algorithm in 
A Chandran et al 2011)

Computed on a laptop in ~ 10-20 minutes using 
the MC method



ES and edge counting in parton states

The algorithm can be used to explicitly demonstrate this from the edge structure and counting.

Good ansatz solutions to the edge states of CF states exists - ES calculation not really needed here. 
However the algorithm can be used to obtain scaling properties of the entanglement spectra in these 
systems. (G J Henderson, G J Sreejith, S H Simon PRB 2021).

In more general states where an exact parent Hamiltonian is not known, for instance “parton” states of the 
form below, ES is a natural way to obtain the edge spectrum (details in the next talk by Ajit) 

Such states are expected to carry edge states described by su(n)_k current algebras - related to the 
non-Abelian statistics. 
(Jain PRL 1989, X G Wen PRL 1992) → based on topological scaling limit arguments.

(Di Francesco et al Intro to CFTs)



ES and edge counting in parton states

Representations of 
su(n)_k algebra →

Entanglement spectra in 
systems of size ~100 → 

System with 1 bulk QHSystem with odd NSystem with even N

Bottomline: The counting are 
exactly identical to each other

More details, more cases, see
Anand, Patil, Balram, Sreejith PRB 2022



Exact Hamiltonians for FQH states

Laughlin state at ⅓ is the densest exact ground state of V1 pseudopotential. The Pfaffian 
state at filling fraction 1/2 is the densest exact ground state of the 3 body short range 
interaction. (Laughlin 1983, Haldane 1983, Read Rezayi 1999, Simon Rezayi Cooper 2007)

In general such pseudopotential interactions are not known for Jain sequence states that 
describe the other states in the LLL.

Unprojected Jain states are good approximations to the projected states. These can 
sometimes be written as the densest exact ground state of simple interactions. For instance 
the unprojected 2/5 Jain state (Trugman, Kivelson 1985)



Exact Hamiltonians for FQH states

Laughlin state at ⅓ is the densest exact ground state of V1 pseudopotential. The Pfaffian 
state at filling fraction 1/2 is the densest exact ground state of the 3 body short range 
interaction. (Laughlin 1983, Haldane 1983, Read Rezayi 1999, Simon Rezayi Cooper 2007)

In general such pseudopotential interactions are not known for Jain sequence states that 
describe the other states in the LLL.

Unprojected Jain states are good approximations to the projected states. These can 
sometimes be written as the densest exact ground state of simple interactions. For instance 
the unprojected 2/5 Jain state (Trugman, Kivelson 1985)

Rotational, translation symmetry allows us to write the 
interaction Hamiltonian as sums of relative angular 
momentum channels.

To specify the interaction, we just have to mention the 
energy cost of two particles to be at relative momenta 
L=0,1,2,3…. 



Gapped states: Composite fermion wavefunctions

In the ground state, every electron is in the 
proximity of 2p number of vortices of other 
electrons.

Statistically, |wavefunction| is higher when the 
electron coordinate is in the proximity of “zeros” of 
other electrons. Within the space of such 
correlated states, interactions are unimportant.
⇒ These composite fermions are weakly 
interacting

Statistically the electrons feel a reduced effective 
field 

Jain PRL 1989
Jain Kivelson Trivedi PRL 1990

Example: Laughlin ⅓ state corresponds to 2p=2 
fluxes attached to electrons. These objects fill one 
LL ie n=1.



Pairwise relative momenta

More generally many particle states

Pairs of particles could be in various possible states with 
various probabilities

Any two particle state can be uniquely decomposed in the 
following form



Pairwise relative momenta

More generally many particle states

Pairs of particles could be in various possible states with 
various probabilities

Any two particle state can be uniquely decomposed in the 
following form

No two particles have a 
relative angular 
momentum of 1
(0,2).

So it is the ground state 
of V1 pseudopotential - 
which penalizes the 
particles if they are in rel 
momentum of 1.

Particles could go into 
other relative momentum 
states - but leads to 
expansion of droplet



Angular momentum constraints, root partitions

The pseudopotential interactions specify the constraints on the allowed relative angular 
momentum between clusters of particles in the states.

Another way to enumerate constraints is by specifying the root partition → Describes the 
number of zeros seen by a particle in a cluster of n other particles. 

Root partition of the Laughlin state 0,3,6,9... ⇒ the wave function vanishes as (z1-z2)^3 
when two particles are brought together ⇒ Relative angular momenta 1 is disallowed ⇒ 
Laughlin state should be a zero energy state of the V1 interaction. Similar idea for the 
Pfaffian.

For the bosonic Jain ⅔ state (as an example) the root partition can be constructed from the 
polynomial structure of the wavefunction. 0,2,4,5,7,8,10,11… ⇒ Analysis does not yield a 
unique zero energy state.

Bernevig Haldane 2007, 2008; Wen, Wang 2008; Simon, Rezayi, Cooper 2007; Sreejith, Fremling, Jeon, Jain (2018); 
Rodriguez et al (2012)



Root partitions, clustering of zeroes

Sreejith Fremling Gunsang Jain PRB 2018



Angular momentum constraints, root partitions

For the bosonic Jain ⅔ state (as an example) the root partition can be constructed from the 
polynomial structure of the wavefunction. 0,2,4,5,7,8,10,11… ⇒ inferred H does not yield the 
right 2/3 zero energy state

We considered Hamiltonians with 2,3,4 body interactions - whose pseudopotentials are 
infrared from the root partition - more complex interactions are not uniquely determined. 
Addition of further constraints beyond what is implied by the root partition also does not yield 
the desired Hamiltonian.

(Sreejith, Jeon, Fremling, Jain, 2018)

Moreover there are more than 1 states with the same root partition (Regnault, Bernevig, Haldane 
PRL 2009). 

Gaffnian



Exact eigenstates of simple Hamiltonians

Laughlin + QHs

Moore Read + QHs

Jain CF state @ ⅖ 

Laughlin 1983, Haldane 1983, Moore Read 1991, Greiter Wen Wilczek 1991, Simon Rezayi Cooper 2007, Trugman Kivelson 1985, Rezayi, MacDonald 
1991, Jain, Kivelson, Trivedi 1990, Bandhopadhyay et al 2018, 2020, Sreejith, Fremling, Jeon, Jain 2018

- Only the zero energy GS and zero energy QH 
states can be written down

- A different model for every FQH state. Each 
model works for only one FQH state

- Conventional approach → cyclotron gap > 
interactions ⇒ Project into one/few LLs.



Motivation

Laughlin 1983, Haldane 1983, Moore Read 1991, Greiter Wen Wilczek 1991, Simon Rezayi Cooper 2007, Trugman Kivelson 1985, Rezayi, MacDonald 
1991, Jain, Kivelson, Trivedi 1990, Bandhopadhyay et al 2018, 2020, Sreejith, Fremling, Jeon, Jain 2018

Features of the model 
( PRL 126, 136601 (2021) )

- Model is defined in the unconventional 
limit of very strong interactions
(relative to the cyclotron energy)

- Strong interaction defines a highly 
constrained Hilbert space

- All low energy states - GS, QH, QP, neutral 
modes can be written down exactly

- A single model H works for multiple FQH 
states
( for all spin polarized Jain states at filling 
n/(2pn+1) )

- Frustration free

Laughlin + QHs

Moore Read + QHs

Jain CF state @ ⅖ 

- Only the zero energy GS and zero energy QH 
states can be written down

- A different model for every FQH state. Each 
model works for only one FQH state

- Conventional approach → cyclotron gap > 
interactions ⇒ Project into one/few LLs.



CF wavefunctions

Jain 1989

Attaches 2p vortices 
to each electron

IQH state of CF at an 
effective B

Our construction is motivated by the structure of the CF wavefunction. 

CF wf describing an incompressible state at 
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Correlations in two particle sectors
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Correlations in two particle sectors

z1

z2

z3

z4 z5

z6

z7

z8

z9

z10

Pairs of electrons in this correlated state occur 
in various possible relative angular momentum 
channels

Summary: For two particles in LLs n and m, relative 
momenta are lower bound by 

Angular momentum

Landau level

-2 -1 0 1 2 3 4 5-3

…… 
…… 
…… 
…… 

Can this be used to construct a parent Hamiltonian 
by projecting out the forbidden sectors ?

No. Multiplication by Jastrow factor does not 
preserve the LL indices.



Jastrow factor of guiding center coordinates

replace with Slater determinant 
Fermions occupying 
arbitrary single 
particle KE 
eigenstates

-Raises relative angular momenta 
-But preserves LL labels

Consider a slightly different wavefunction



Guiding center coordinates

Position operator scatters between LLs

Landau level blocks

Landau 
level 
blocks



Guiding center coordinates

Position operator scatters between LLs

Landau level blocks

Landau 
level 
blocks

Landau level blocks

Landau 
level 
blocks

Guiding center coordinates do not 
scatter between LLs

Guiding center can be thought of as 



Guiding center coordinates
Guiding center coordinates do not 
scatter between LLs

[ T , Z ] = 0 ⟺ Preserves Landau level 

[ L , Z ] = Z ⟺ changes momentum

replace with
For two CFs in LLs n and m, 
relative momentum in the 
state is lower bound by 



Jastrow factor of guiding center coordinates

replace with

For two particles in LLs n and m, relative momenta 
in this state is lower bound by 

satisfies this property

Slater determinant 
Fermions occupying 
arbitrary single 
particle KE 
eigenstates

-Raises relative angular momenta 
-But preserves LL labels



Jastrow factor of guiding center coordinates

replace with

For two particles in LLs n and m, relative momenta 
in this state is lower bound by 

The wavefunction is different from the Jain CF 
states → Jastrow factor is replaced with an 
operator.

satisfies this property

Slater determinant 
Fermions occupying 
arbitrary single 
particle KE 
eigenstates

-Raises relative angular momenta 
-But preserves LL labels



Pseudopotential Hamiltonian

Projector onto relative 
momentum channels

Sum over forbidden relative 
momentum channels

Sum over Landau levels of 
particle pairs

We can construct an interaction for which previously mentioned states are exact zero energy states

Anand, Jain, Sreejith (2021)

Ground state of the model is closely 
related to that of a multilayer model.
The excited states have a qualitatively 
different structure.

Related bilayer model for ⅖ states: 
Milovanovic, Papic (2010), Papic, Goerbig, 
Regnault, Milovanovic (2010)



Pseudopotential Hamiltonian

○ Imposes an energy cost for 
pairs in the forbidden relative 
momentum sectors

○ Includes intra LL and inter LL 
interactions

○ Number of particles in each LL 
is conserved

Projector onto relative 
momentum channels

Sum over forbidden relative 
momentum channels

Sum over Landau levels of 
particle pairs

We can construct an interaction for which previously mentioned states are exact zero energy states



Interaction Hamiltonian & its zero interaction energy space



Interaction Hamiltonian & its zero interaction energy space

    These states are low energy states of a Hamiltonian                        in the limit 



Interaction Hamiltonian & its zero interaction energy space

    These states are low energy states of a Hamiltonian                        in the limit 

Energy of the state is same as the KE of the slater determinant 



Interaction Hamiltonian & its zero interaction energy space

    These states are low energy states of a Hamiltonian                        in the limit 

Energy of the state is same as the KE of the slater determinant 

We conjecture that these 
type of states exhaust the 
null space of V and are 
linearly independent.

Conjecture tested and found 
to be exact in every one of 
~200 systems studied.



Spectrum of H=T+V

Blue color dashes = Null space of interaction V
 
→ Includes QP, QH, neutral modes etc

→ wavefunctions for all these states can be 
explicitly written down

→ Low energy quantum numbers same as 
- those of non-interacting electrons in a 

reduced field B*, and 
- by implication same as those of Coulomb 

problem in LLL (Jain 1989)

Grey color dashes = Finite interaction energy states
 
These will pushed to infinite energies if interaction 
strength is sent to infinity



Spectrum of H=T+V compared to LLL Coulomb

Low energy states of LLL Coulomb
have the same quantum numbers as
the low energy states of the model 
Hamiltonian.

Model

LLL 
Coulomb



Berry phase, charge of localized excitations

A Anand,A Kolhatkar, unpublished

Berry phase from winding one 
localized QP around a QH of 1/3

Charge inside a disc around 1 or 2 
localized QPs of the model
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Infinite DMRG on cylinder

A Anand, Kolhatkar unpublished

⅓ QP from 
iDMRG+finite 
DMRG

MESs generated 
by translates of 

Zalatel, Mong, Pollmann 2013



Adiabatic continuity: From model to LLL Coulomb

For all finite systems that we could 
study ground state, single quasihole 
state 
and single quasiparticle state
of the model are adiabatically 
connected with corresponding LLL 
Coulomb states. 

Path in space of Hamiltonians



Generalization to the Torus geometry
Though the model was originally written in terms of angular momenta, the interaction is local.
So we expect that the model should be generalizable to geometries without any rotational symmetry.

Indeed this can be generalized to the torus geometry. (Haldane, 1990; Haldane 1985)

A Anand, Pu, unpublishedFQH spectrumIQH spectrum



Conclusions

Anand, Jain, Sreejith, PRL 126, 136601 (2021), Anand, Pu (unpublished)

➢ An infinitely strongly interacting model with exactly solvable spectra - not just GS and QH but also QP, 
exciton states and all excited states can be constructed.

○ Gapped GS at Jain sequence v=n/(2pn+1)
○ Low energy quantum numbers, charge, statistics, topological degeneracies, shifts of incompressible 

states all same as LLL Coulomb
○ Microscopic model with an exact mapping between FQHE of electrons at B and IQHE of CFs at B*

➢ An unusual limit: Large interaction compared to the cyclotron gap
○ Instead of the usual single particle constraint of restricting to LLL
○ This has a many particle constraint wherein the low energy Hilbert space is made of highly 

correlated many body states
○ KE splits this space to produce LLL Coulomb-like low energy spectra. 

➢ Numerics clearly show that the low energy quantum numbers expected from the exact solutions hold in all 
geometries - torus, sphere, disk, cylinder. 

○ Exact solutions exist only on systems with an open boundary - cylinder and disk. 
○ Attempts at writing the solutions on closed manifolds fail → Wavefunctions “spill out of the Hilbert 

space” on the sphere (Greiter 2011)
○ For closed manifolds another form of solution can be obtained for all states with filling < ⅖
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