
  

Topological quantum matter with 
ultracold gases
Speaker: Sebastiano Peotta
Academy Research Fellow, Aalto University

Correlations in Topological Quantum matter, CTQM2022
Lammi, 7th September 2022



  

Outline

1) Quantum Hall effects and band structure invariants 

2) The ultracold gas toolbox

3) Ultracold gas implementations of the integer quantum Hall effect

4) Towards the fractional quantum Hall effect with ultracold gases



  

1) Quantum Hall effects and band structure 
invariants



  

Quantum Hall effects

Integer and fractional quantum Hall effects (IQHE 
and FQHE) in ultrahigh-mobility GaAs/AlGaAs in 
two dimensional electrons gas
H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999)

● IQHE: topological band insulator
● FQHE: phase of matter with topological order
A. Bernevig and T. Neupert, arXiv:1506.05805

Topological order:
● Topological ground state degeneracy
● Fractionalized excitations
● Topological entanglement entropy



  

Band structure invariants
Topological band insulators are characterized by band structure invariants 
obtained from the wave functions of a noninteracting Hamiltonian

Discrete translational invariance → Bloch plane waves

Periodic Bloch functions lattice vectors

“Gauge” transformation

Band structure invariants = invariant under gauge transformations

Berry connection not an invariant

transforms as the EM vector potential 



  

Berry curvature and Chern number
Berry connection

Berry curvature

not an invariant

The Chern number C is always an integer!
Topological invariant proportional to the Hall conductance (IQHE)

Similar to a vector potential
Berry phase
Similar to a magnetic flux

The integral is over the 
Brillouin zone (B.Z.)Similar to a magnetic field  along 

the z-axis (2D)

Chern number

D. Thouless, M. Kohmoto, M. 
Nightingale, and M. den Nijs, 
PRL 49 405, (1982)

Kubo-Chern formula



  

Quantum geometric tensor

Quantum Geometric Tensor
J. P. Provost and G. Vallee, Commun. Math. Phys. 76, 289 (1980)

A more comprehensive band structure invariant is the 

Quantum metric

Berry curvature



  

Applications of the quantum metric

● Mobility gap in the integer quantum Hall effect (localization length): J. Bellissard, A. van 
Elst and H. Schulz- Baldes, J. Math. Phys. 35, 5373 (1994), R. Resta, Eur. Phys. J. B 79, 121 (2011)

● Localization functional for Wannier functions: N. Marzari et al., Rev. Mod. Phys. 84, 1419 (2012); 
Marzari, N., and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

● Superfluidity in flat band systems: SP and P. Törmä, Nat. Comm. 6, 8944 (2015); P. Törmä, SP and 
B. A. Bernevig, Nat. Rev. Phys. 4, 528 (2022)

● Orbital magnetic susceptibility: Y. Gao et al., Phys. Rev. B 91, 214405 (2015); F. Piéchon et al., 
Phys. Rev. B 94, 134423 (2016)

● Current noise: T. Neupert, C. Chamon, and C. Mudry, Phys. Rev. B 87, 245103 (2013)

● Fractional Chern insulators: R. Roy, Phys. Rev. B 90, 165139 (2014); T. S. Jackson et al., Nat. 
Commun. 6, 8629 (2015); Z. Liu and E. Bergholtz, arXiv:2208.08449

● …….

For an introduction see: Ran Cheng, arXiv:1012.1337 

The quantum metric has found applications in many different contexts:



  

What about disorder?
Disorder is essential to explain the Hall conductance plateaus in the quantum Hall effects

The Kubo-Chern formula can be extended to the disordered case in the framework of 
noncommutative geometry J. Bellissard, A. van Elst and H. Schulz- Baldes, J. Math. Phys. 35, 5373 (1994)

Fourier (Bloch-Floquet-Zak) transform

The noncommutative Chern number Cn.c. is quantized 
if the localization length is finite (mobility gap)

Localization length squared



  

Density of states and mobility gap

Extended states = diverging localization length

Localized states = finite localization length

Figure from B. Jeckelmann and B. Jeanneret, Rep. 
Prog. Phys. 64, 1603 (2001)  



  

The quantum Hall effects are the blueprint for topological states of matter

Current challenges:
● FQHE at higher temperature and lower/zero magnetic field
● Novel topological phases (non-Abelian)→ topological quantum computation
● Topological states of matter in systems other than quantum wells in semiconductors

New platforms

Two promising candidate platforms 
Z. Liu and E. Bergholtz, arXiv:2208.08449

Ultracold gases in 
optical lattices

Moiré materials
(Twisted bilayer 
graphene, ...)

Focus of this talk Ultracold gases can simulate moiré materials!



  

2) The ultracold gas toolbox



  

Ultracold gases: basics

Ultracold gases in optical lattices have become a highly customizable platform for investigating 
quantum many-body physics Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2009)

Ultracold atoms: neutral atoms in vacuum trapped by laser light 
and magnetic fields

● Typical atoms: Rb, Cs, Na, K, Li, Yb, Sr, Er, Dy,…

● Density: from 1012 to 1015 cm-3, interparticle spacing 0.1-1μm

● Temperature: down to fraction of nanoKelvin (nK)

● Entropy per particle: down  to S/N = 10−3 kB

● Atoms are in the ultracold regime when they reach degeneracy

● Bose-Einstein condensation (BEC) for bosonic atoms, 
degenerate Fermi gas for fermions 



  

Optical lattices

2D optical lattice

3D optical lattice

Single-particle Hamiltonian (continuum)

Periodic potential  (cubic lattice)

Optical lattice = periodic potential for neutral atoms generated by laser standing waves 

Low energy effective lattice Hamiltonian



  

Bose-Hubbard model with nearest-neighbour hopping

Condensate (BEC) wavefunction
Increasing U/J

Increasing U/J Mott insulator wavefunction

M. Greiner, M. O. Mandel,
T. Esslinger, T. Hänsch, and 
I.Bloch, Nature 415, 39 (2002)

The effective mass is completely 
tunable in the range

Superfluid-Mott insulator transition



  

Engineering artificial gauge fields
Solid state systems: magnetic field and spin-orbit coupling → gauge fields

How to realize gauge fields 
for neutral atoms?
● Rotating traps
● Optical lattice shaking
● Laser-assisted tunneling
● Synthetic dimensions
● Optical flux lattices (theory)

Peierls phase
Artificial magnetic field 



  

Artificial gauge fields through lattice shaking

Original proposal: graphene irradiated by circularly polarized light, T. Oka and H. Aoki, PRB 79, 169901 (2009)

Realized with ultracold atoms in a deformed hexagonal lattice, G. Jotzu, et al., Nature 515, 237 (2014)  

Circular shaking of an 
hexagonal lattice

Enhanced and complex next-
nearest neighbor tunneling 

Effective (Floquet) Hamiltonian 
from high-frequency expansion

 Haldane model
(to be introduced soon)



  

Laser-assisted tunneling in optical lattices

Laser-assisted tunneling has been used to 
realize the Harper-Hofstadter model
(square lattice + uniform magnetic field)
[1] Aidelsburger et al., PRL 111, 185301 (2013)
[2] Miyake et al., PRL 111, 185302 (2013)
[3] Aidelsburger et al., Nat. Phys. 11, 162 (2015)

From Ref. [2]

Tunneling in the x direction is suppressed by 
the tilt Δ and restored by means of a two-
phonon Raman process

Raman-assisted tunneling matrix elements are 
complex → Peierls phase



  

Synthetic dimensions
Idea: the atom internal states (hyperfine states) become lattice sites aligned along a new 
fictitious spatial dimension A. Celi et al., PRL 112, 043001 (2014) 

Hopping along the synthetic dimension is induced by resonant light or two-photon Raman transition

Advantages
● Single-site resolution along the synth. dim.
● Hard wall confinement along the synth. dim.
● Reduced heating, important for many-body effects 



  

Simulating twisted bilayer graphene with ultracold atoms

Idea: use atom internal states to encode 
both layer and spin degrees of freedom
(synthetic dimension)

Interlayer tunneling is introduced by a 
Raman transition

Raman detuning is modulated → 
modulated interlayer hopping

Periodicity of interlayer hopping is 
different from lattice periodicity → moiré 
pattern in interlayer hopping

Topological and quasiflat bands can be 
obtained, as in twisted bilayer graphene 
T. Salamon et al., PRA 102, 235126 (2020) 

T. Salamon et al., PRL 
125, 030504 (2020)

P. Törmä, SP and B. A. 
Bernevig, Nat. Rev. 
Phys. 4, 528 (2022)



  

3) Ultracold atoms implementations of the 
integer quantum Hall effect 



  

nearest neighbor 
(NN) hopping

next NN hopping
sublattice energy 
difference

Breaks lattice inversion 
symmetryfor the next NN hoppings 

according to arrow directions 

Breaks time-reversal 
symmetry, zero net 
magnetic flux

Simple two-orbital model with topologically nontrivial bands in the absence of a uniform magnetic 
field F. D. M. Haldane, PRL 61, 2015 (1986)

Haldane model: a prototype topological Hamiltonian

Example of anomalous Hall 
effect, Chern insulator



  

Phase diagram of the of the Haldane model

Peierls phase of next nearest 
neighbor hopping

sublattice 
energy 
difference

ν Chern number
The Chern number changes when 
the band gap closes (Dirac point) 



  

Measuring the band topology: differential drift
Semiclassical equations of motion 
for wavepacket center of mass

trapping potential

Berry curvature

Berry curvature and trapping potential induce a drift 
orthogonal to the velocity in momentum space

G. Jotzu, et al., Nature 515, 237 (2014)



  

Measuring the Chern number
High precision measurement of the Chern number  in the Harper-Hofstadter model implemented 
with laser-assisted tunneling, Aidelsburger et al., Nat. Phys. 11, 162 (2015)

Measured Chern number
νexp = 0.99(5)



  

Visualization of skipping orbits with synthetic dimensions

The hard wall boundary conditions along 
the synthetic dimension enable the 
observation of skipping orbits

From Mancini et al., Science 349, 1510 (2015)
See also Stuhl et al., Science 349, 1514 (2015)   



  

5) Towards the fractional quantum Hall 
effect with ultracold gases



  

Long-standing interest to realize the FQHE and FCIs with ultracold gases

Chern insulators: integer vs. fractional

Chern insulator: quantization of Hall conductance without Landau levels (uniform 
magnetic field), lattice analogue of quantum Hall effect (e.g. Haldane model) 

Integer Chern insulator:
● Fully filled isolated band with nonzero Chern number (done with UG)

Fractional Chern insulator (FCI):
● Nontrivial band topology (as for integer Chern insulator)
● Bandwith much smaller than interaction scale (flat band limit)
● Band geometry: uniform Berry curvature and quantum metric



  

Conditions for realizing a fractional Chern insulator
In Landau levels  the Berry curvature and the quantum metric are uniform, moreover the 
trace and determinant conditions are satisfied

Quantum Geometry tensor is positive 
semidefinite (nonnegative eigenvalues)

Trace and determinant conditions: inequalities are equalities 

FCI are favoured if 

● The band is flat
● The band is topologically nontrivial (nonzero C)
● Uniform Berry curvature and quantum metric 

(similar to Landau levels)
● Trace and determinant conditions are satisfied 

(similar to lowest Landau level)



  

Laughlin wave functions for bosons and fermions

Laughlin wave functions

m = 2, symmetric w.f., bosons at filling ν = 1/2

m = 3, antisymetric w.f. fermions at filling ν = 1/3 

Lattice analogues of Laughlin w.f. for bosons and fermions are found in  
many lattices (e.g. Haldane and Harper-Hofstadter models) Z. Liu and E. 
Bergholtz, arXiv:2208.08449

Also lattice analogues of more exotic states (Moore-Read “Pfaffian” state)



  

Laughlin wave functions in (flattened) Haldane model 
T. S. Jackson, M. Gunnar and R. Rahul, Nat. Comm. 6, 8629 (2015) 

σB  root mean square of Berry curvature over B.Z.

σg  root mean square of quantum metric over B.Z.

B.Z. average of 

Δ   many-body gap for lattice analogue of 
Laughlin wave functions



  

The way ahead 
● FCI states can be stabilized in a number of lattice models for both bosons and 

fermions Z. Liu and E. Bergholtz, arXiv:2208.08449

● Advantages of ultracold gases: high tunability of lattice structure and interactions 
→ interesting FCI states (nonabelian), Hamiltonian is known precisely, control 
and detection at single-atom level with quantum microscopes

● Detection using center of mass drift [J. Motruk and I. Na, Phys. Rev. Lett. 125, 236401 (2020); 
C. Repellin et al., Phys. Rev. A 102, 063316 (2020)]  

● Key challenge: realize complex hoppings with minimal heating

● Novel proposal for experiments: dipolar atoms [N. Y. Yao et al., Phys. Rev. Lett. 109, 
266804, (2012)], optical flux lattices [N. R. Cooper,  Phys. Rev. Lett. 106, 175301, (2011)]

● Experiments exploring the interplay of artificial gauge fields in ultracold gases and 
interactions are under way



  

Interacting Harper-Hofstadter model in the two-body limit I
Two-leg ladder with nonzero magnetic flux realized with laser-assisted tunneling
Tai et al., Nature 546, 519 (2017) 

Demonstrated the combined effect of interactions and synthetic gauge fields, and 
single-atom site-resolved detection and manipulation



  

Interacting Harper-Hofstadter model in the two-body limit II

Tai et al., Nature 546, 519 (2017) 



  

Universal Hall response in a synthetic ladder

T.-W. Zhou et al., arXiv:2205.13567

Hall imbalance ΔH

analogous to the Hall coefficient

The Hall imbalance acquires a universal value 
in the presence of interactions S. Greschner et 
al., Phys. Rev. Lett. 122, 083402 (2019) 



  

Dressed atomic states and artificial gauge fields
Hamiltonian of an atom (two-internal states) in an optical field 

For large V the atom follows adiabatically 
the dressed state with lowest energy

Effective Hamiltonian in the adiabatic approximation

Local flux number density

For smooth vector potential 
average flux density is small

L typical system size
λ laser wavelength



  

Theoretical proposal: optical flux lattices 

Synthetic magnetic fields have been realized with dressed states
Y.-J. Lin et al., Nature 462, 628 (2009)

To reach the regime of high flux density one has to allow for singularities in the vector potential 
(similar to Dirac strings for magnetic monopoles) N. R. Cooper, PRL 106, 175301 (2011) 

Chern number = number of flux 
quanta per unit cell 

Large average flux density

Local Bloch vector

Bloch vector Flux density



  

Thanks for your attention!
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