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In this work we generalize the notion of topological electronic states to 
random lattices in non-integer dimensions. By considering a class D 
tight-binding model on critical percolating clusters resulting from a two-
dimensional site percolation process, we demonstrate that these 
topological random fractals exhibit the hallmarks of topological 
insulators while hosting a gapless spectrum.
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Our large-scale numerical studies reveal that topological random 
fractals:

• Display a robust mobility gap, 

• Support quantized conductance.

• Represent a well-defined thermodynamic phase of matter. 

The finite-size scaling analysis further suggests that the critical 
properties are not consistent with the expectations of class D systems 
in two dimensions, hinting to the nontrivial relationship between fractal 
and integer-dimensional topological states.

Abstract

Model and phase diagram

Spectral insulator-Anderson insulator transition

• The mid-spectrum DOS indicates the 
formation of a spectral gap for 𝑀 < 1.1, 
while for 1.1 < 𝑀 < 2.9 the system is in 
a gapless AL phase. Both phases 
separated by the tricritical metallic 
point (𝑡!", 𝑀") ≈ (0, 1.1) are insulating.

• The inverse participation ratio in the 
region 1.1 < 𝑀 < 2.9 shows great 
enhancement around 𝐸 = 0 everywhere 
in the AL regime, indicating that the 
spectrum is gapless but consists of trivial 
localized states.

Properties of topological random fractal phase
• The gapped-gapless phase transition coincides with the trivial-

topological fractal transition.

• If the energy is in the mobility gap, the conductance (for samples 
larger than the localization length) remains quantized.

• The quantization develops rapidly when moving from the
tricritical point towards the topological phase. Larger systems 
exhibit on average more precise quantization, indicating that 
the random fractal phase is a well-defined thermodynamic phase 
of matter.

Finite-size scaling of two-terminal conductance

Near the transition, one expects that the configuration-averaged 
conductance obeys a single-parameter scaling hypothesis in
the large system limit. By calculating the conductance as a function
of the second-nearest-neighbour hopping, we can show that the 
standard two-dimensional class D scaling does not match the 
numerical evidence.
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• This model breaks TR and 
satisfies PH symmetries, 
hence belonging to the 
class D.

• On a square lattice in the 
clean limit, the model 
supports topological phases 
with nonzero Chern
number.

Main findings


