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Abstract Properties of topological random fractal phase

In this work we generalize the notion of topological electronic states to * The gapped-gapless phase transition coincides with the trivial-
random lattices in non-integer dimensions. By considering a class D topological fractal transition.

tight-binding model on critical percolating clusters resulting from a two-

dimensional site percolation process, we demonstrate that these * If the energy 1s in the mobility gap, the conductance (for samples
topological random fractals exhibit the hallmarks of topological larger than the localization length) remains quantized.

insulators while hosting a gapless spectrum. o . .
* The quantization develops rapidly when moving from the

tricritical point towards the topological phase. Larger systems
exhibit on average more precise quantization, indicating that
the random fractal phase 1s a well-defined thermodynamic phase
of matter.
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Main findings

Our large-scale numerical studies reveal that topological random
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* Display a robust mobility gap, * The mid-spectrum DOS indicates the (@) 10
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Support quantized conductance. while for 1.1 < M < 2.9 the system is in Am e
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The finite-size scaling analysis further suggests that the critical point (t3, M) ~ (0,1.1) are insulating. "™ 5
properties are not consistent with the expectations of class D systems . The i C S, S S OTT
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Near the transition, one expects that the configuration-averaged

0.4 Topological Fractad 10 conductance obeys a single-parameter scaling hypothesis in
* This model breaks TR and Spectral B o the large system limit. By calculating the conductance as a function
satisfies PH symmetries, Py [nsulator e Insulator of the second-nearest-neighbour hopping, we can show that the
hence belonging to the standard two-dimensional class D scaling does not match the
class D numerical evidence.
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