Engineering artificial heavy-fermion quantum matter in twisted van der Waals materials

Jose Lado

Department of Applied Physics, Aalto University, Finland

Phys. Rev. Lett. 127, 026401 (2021)

Nature 599, 582–586 (2021)

Correlations in Topological Quantum Matter, Lammi, Finland September 7th 2022

Complexity, universality and emergence

Fish schools

Phys. Rev. Lett. 120, 198101 (2018)

Complex systems allow to have new phenomena that did not exist before

Exotic physics in quantum materials

Quantum spin liquids

Unconventional superconductivity

Topological matter

Topological quantum computing

Low consumption electronics

<u>New physics not yet realized in nature (fractional quantum particles)</u>

Building quantum matter with artificial lattices

Atomic lattices

a = 0.5 nm

Nature Physics 12 (7), 656 (2016) Nature Physics 13 (7) 668 (2017) Science 335 (6065), 196-199 (2012)

Twisted 2D moire materials

a = 30 nm

Phys. Rev. Lett. 99, 256802 (2007) Nature Physics 6, 109–113 (2010) PNAS 108 (30) 12233-12237 (2011) Nature 556, 80–84 (2018) **Cold atoms**

a = 1000 nm

Nature 545, 462–466 (2017) Nature 455, 204–207 (2008) Phys. Rev. Lett. 111, 185307 (2013)

A new universe in each van der Waals heterostructure

Each van der Waals heterostructure allows creating a whole new universe for electron

The two-dimensional materials world

Semimetal Graphene

Superconductor NbSe₂

Ferroelectric SnTe

Semiconductor WSe

Quantum spin Hall insulator WTe₂

Multiferroic Nil₂

The flexibility of two-dimensional materials

They can be stacked

They can be rotated

Nature 499.7459 419. (2013)

Science 361.6403 690-693. (2018)

These are unique features of two-dimensional materials

Upper graphene layer

One material, a zoo of electronic phases

Twisted bilayer graphene

Superconductivity

Nature 556, 43–50 (2018)

Correlated insulators

Nature 556, 80–84

(2018)

Topological networks

Nano Lett. 18, 11, 6725-6730 (2018)

Quasicrystalline physics

Science 361, 782-786 (2018)

Chern insulators

Science 365, 605-608 (2019)

Fractional Chern insulators

Nature 600, 439–443 (2021)

A bilayer of a van der Waals material realizes a variety of widely different electronic states

The generality of correlated physics in twisted 2D materials

Superconductivity & correlated behavior found also in

Twisted graphene trilayers

Nature 590, 249–255 (2021) No

Nature 583, 221–225 (2020)

<u>Some of new physics observed were only realized before in rare, heavy or even toxic compounds</u>

Controlling electronic states in van der Waals materials

Of course, we can use the typical knobs of bulk compounds

(pressure, chemical doping, etc)

Most importantly, we can exploit the full tunability of van der Waals materials

Gating

Materials engineering

Science 306, 5696, 666-669 (2004)

Nat, Rev, Mat, 6, 201–206 (2021)

Nature 499, 419–425 (2013)

Science, 352(6284), 437-441 (2016)

Allowing to independently control different features of the electronic structure

Atomic engineering

The opportunities of twisted van der Waals materials

"Unveil" the nature of high T_c superconductivity (?)

Controllable exotic quantum matter (?)

A platform for topological quantum computing (?)

Explore exotic physics with a degree of control unprecedented in any other material

- \rightarrow Control of single particle and many-body interactions
- \rightarrow Explore physics that only appear in rare or toxic compounds

Designing quantum matter in twisted materials

The strength of electronic correlations $V_{ijkl}c_i^{\dagger}c_jc_k^{\dagger}c_l$ The details of the electronic dispersion

The local quantum degrees of freedom

Twist angle control

Interlayer bias

Magnetic 2D materials

Goal: engineer local quantum degrees of freedom via 2d magnetism

Designing heavy-fermion quantum matter with twisted magnetic van der Waals materials

Magnet 1T-TaS₂

Metal 1H-TaS₂

Behind the scenes

Heavy fermions in twisted graphene trilayers

Aline Ramires

Phys. Rev. Lett. 127, 026401 (2021)

Heavy fermions in twisted dichalcogenide bilayers

S. Ganguli M. Amini

G. Chen

V. Vaňo

S. Kezilebieke P. Liljeroth

Nature 599, 582–586 (2021)

Heavy fermions in van der Waals materials

Searching for new heavy fermion compounds

We have a rich family of bulk heavy-fermion compounds

CeCoIn₅ Science 375, 6576, 76-81 (2021)

UTe₂ Nature 579, 523–527 (2020)

- Strongly correlated matter, dominated by Kondo lattice physics
- Unique system to realize quantum criticality and unconventional superconductivity
- Found in rare-earth compounds, such as UTe₂ or UPt₃

Searching for new heavy fermion compounds

We have a rich family of bulk heavy-fermion compounds

CeCoIn₅ Science 375, 6576, 76-81 (2021)

UTe₂ Nature 579, 523–527 (2020)

Can we realize heavy-fermion physics with two-dimensional materials?

Phys. Rev. Lett. 127, 026401 (2021) Nature 599, 582–586 (2021) Phys. Rev. Research 3, 043173 (2021) arXiv:2110.11962 arXiv:2207.00096

Building an artificicial heavy fermion state

Lattice of Kondo impurities

f-electrons in rare-earth compounds

s/p/d-electrons in rare-earth compounds

Dispersive electron gas

Building an artificial heavy fermion state

Conduction electrons form Kondo singlets with the impurities

Kondo-lattice model

2

K

Associated with Kondo lattice physics:

- Colossal mass enhancement of electrons
- Quantum criticality
- Unconventional (topological) superconductivity

Basics of heavy fermion physics

Science 332.6026, 196-200 (2011)

Associated with Kondo lattice physics:

- Colossal mass enhancement of electrons
- Quantum criticality
- Unconventional (topological) superconductivity

The Kondo lattice problem

The Kondo problem

The Kondo lattice problem

Lattice of Kondo impurities

Dispersive electron gas

Both ingredients coupled through Kondo coupling

The Kondo lattice problem

The Kondo lattice problem $H = -t \sum_{(i,j)\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c} \right) + J \sum_{j,\alpha\beta} \left(c_{j\beta}^{\dagger} \vec{\sigma}_{\beta\alpha} c_{j\alpha} \right) \cdot \vec{S}_{j}$ Kondo sites Kondo coupling

Conduction electrons

Solving the Kondo lattice problem

$$H = -t \sum_{(i,j)\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c} \right) + J \sum_{j,\alpha\beta} \left(c_{j\beta}^{\dagger} \vec{\sigma}_{\beta\alpha} c_{j\alpha} \right) \cdot \vec{S}_{j}$$

Replace the spin sites by auxiliary fermions

$$S_{\alpha\beta}(j) \sim f_{j\alpha}^{\dagger} f_{j\beta} - \frac{n_f(j)}{N} \delta_{\alpha\beta}$$

This makes the effective Hamiltonian an "interacting" fermionic Hamiltonian

$$H \sim \sum_{\mathbf{k}\alpha} \epsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - J \sum_{j,\alpha\beta} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

Solving the Kondo lattice problem

Now we decouple the fermions with a mean-field approximation

$$H \sim \sum_{\mathbf{k}\alpha} \epsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - J \sum_{j,\alpha\beta} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

Obtaining a quadratic Hamiltonian

$$H \sim \sum_{\mathbf{k}\alpha} \epsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} - \gamma_{K} \sum_{\mathbf{k},\alpha} f_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + h.c.$$

Conduction band dispersion

Kondo hybridization

Electronic structure of the Kondo lattice problem

Electronic structure of the Kondo lattice problem

The Kondo coupling opens up a gap in the electronic structure

Dependence on the Kondo coupling

The heavy-fermion gap becomes bigger as the Kondo coupling increases

Aline Ramires

Phys. Rev. Lett. 127, 026401 (2021)

Top view

Top view

Band structure

Band flattening as an interlayer bias is applied

Top view

Electronic structure in the presence of an electric bias

Low energy model

Electronic structure in the presence of an electric bias

Mean-field electronic structure at half filling

Local spin and valley moments appear when including electronic interactions at the mean-field level

Mean-field electronic structure at half filling

Promoting spin moment formation

Promoting valley moment formation

Local spin and valley moments appear when including electronic interactions at the mean-field level

Kondo lattice model in the presence of interactions

A heavy fermion regime appears when the Kondo coupling dominates over the exchange coupling

 $|J/J_K| < 1$

Kondo lattice model in the presence of interactions

Interactions of the Kondo lattice model

A heavy fermion regime appears when the Kondo coupling dominates over the exchange coupling

 $|J/J_K| < 1$

The full phase diagram of the heavy fermion system can be explored in a single twisted graphene, by tuning the system with an electric bias

An experimental signature of heavy-fermion physics: spin-triplet superconductivity

Reentrant superconductivity in twisted trilayer graphene

Heavy-fermions in a van der Waals dichalcogenide heterostructure

- S. Ganguli
- - M. Amini

V. Vaňo

S. Kezilebieke

P. Liljeroth

Nature 599, 582–586 (2021)

Heavy-fermions in dichalcogenide bilayers

Triangular lattice of local magnetic moments

Two-dimensional electron gas

$1T-TaS_2$

Moment formation in 1T-TaS₂

Charge-density wave reconstruction, leading to a localized orbital in a $\sqrt{13} \times \sqrt{13}$ unit cell

Strong interactions give rise to local moment formation

Effectively described by an S=1/2 Heisenberg model in a triangular lattice

PNAS 114.27 (2017) Phys. Rev. X 7, 041054 (2017) Phys. Rev. B 96, 195131 (2017)

Heavy-fermions in dichalcogenide bilayers

Interlayer coupling creates the Kondo coupling

Intralayer exchange between local moments

The bilayer realizes all the ingredients for heavy-fermion physics

Brief theory of heavy-fermions

Kondo physics introduces resonant pseudo-fermions at the chemical potential

Leading to the opening of a heavy-fermion gap

Heavy-fermion hybridization gap

Increasing Kondo coupling

The Kondo coupling leads to a heavy-fermion gap opening in the metal

Heavy-fermion hybridization gap

Kondo pseudofermions

Hybridized excitations

Conduction spectral function

The gap remains open when including a small psedofermion dispersion

Experimental signatures of heavy-fermion physics

Kondo physics in the magnetic latticeGap opening in the metallic layer

Both signatures can be probed with scanning tunnel microscopy by growing two heterostructures

Probing the Kondo peak

Probing the heavy-fermion gap

Grid spectroscopy of 1T-1H

Zero bias (Kondo) peak appearing with the CDW periodicity

Height 0 Å **Englis** 1 Å

Grid spectroscopy of 1T-1H

Zero bias (Kondo) peak appearing with the CDW periodicity

0 mV

Zero bias Kondo peak

1T @ HOPG: Mott insulator

1H @ HOPG: Metal (with a SC state at very low T)

1T @ 1H: Kondo peak

Kondo physics in the magnetic lattice

Temperature and field dependence consistent with Kondo

Kondo physics in the magnetic lattice

The Kondo peak follows the expected temperature dependence

Heavy-fermion gap in the 2D electron gas

Temperature and field dependence consistent with a heavy-fermion gap

Heavy-fermion gap in the 2D electron gas

Heavy-fermion gap in the 2D electron gas

The gap shows a temperature dependence beyond thermal broadening, expected from a heavy-fermion gap

Next steps in van der Waals heavy-fermions

Can we push this system to critical and different unconventional superconducting regimes?

Controlling the heavy-fermion state

Of course, we can use the typical knobs of bulk heavy fermion compounds (pressure, chemical doping, etc)

Twist engineering

Most importantly, we can exploit the full tunability of van der Waals materials

Gating

ct gate channel gate

Science 306, 5696, 666-669 (2004)

Nature Reviews Materials 6, 201–206 (2021)

Nature 499, 419-425 (2013)

Allowing to independently control Kondo coupling, exchange coupling, doping and electronic dispersion

Computing electronic properties

Quantum Lattice: A user interface to compute electronic properties

Quantum Lattice: open source interactive interface for tight binding modeling

https://github.com/joselado/quantum-lattice

Quantum matter in van der Waals materials school

University of Jyväskylä 31st Jyväskylä Summer School Emergent quantum matter in artificial two-dimensional materials August 8th-12th 2022

Schedule:

- Session 1: Introduction to 2D materials
- Session 2: Superconductivity in 2D materials
- Session 3: Magnetic 2D materials
- Session 4: Moire electronic states and twisted van der Waals heterostructures
- Session 5: Topological states in 2D materials

Recordings available at

https://www.youtube.com/channel/UCgnB-4CcqRQnvTi7P0cUakQ

- Session 1: Introduction to 2D materials
- Session 2: Superconductivity in 2D materials
- Session 3: Magnetic 2D materials
- Session 4: Moire electronic states and twisted van der Waals heterostructures
- Session 5: Topological states in 2D materials

Take home

Van der Waals heterostructures provide a platform to engineer heavy-fermion physics, opening a pathway to a whole new family of emergent quantum states

Phys. Rev. Lett. 127, 026401 (2021) Nature 599, 582–586 (2021) Thank you!

Funding from

ANE AND AATO

ERKKO FOUNDATION

